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Abstract
The early eye tracking studies of Yarbus provided descriptive evidence that an observer’s task influences patterns of eye
movements, leading to the tantalizing prospect that an observer’s intentions could be inferred from their saccade behavior.
We investigate the predictive value of task and eye movement properties by creating a computational cognitive model of
saccade selection based on instructed task and internal cognitive state using a Dynamic Bayesian Network (DBN).
Understanding how humans generate saccades under different conditions and cognitive sets links recent work on salience
models of low-level vision with higher level cognitive goals. This model provides a Bayesian, cognitive approach to top-
down transitions in attentional set in pre-frontal areas along with vector-based saccade generation from the superior
colliculus. Our approach is to begin with eye movement data that has previously been shown to differ across task. We
first present an analysis of the extent to which individual saccadic features are diagnostic of an observer’s task. Second, we
use those features to infer an underlying cognitive state that potentially differs from the instructed task. Finally, we
demonstrate how changes of cognitive state over time can be incorporated into a generative model of eye movement
vectors without resorting to an external decision homunculus. Internal cognitive state frees the model from the assumption
that instructed task is the only factor influencing observers’ saccadic behavior. While the inclusion of hidden temporal state
does not improve the classification accuracy of the model, it does allow accurate prediction of saccadic sequence results
observed in search paradigms. Given the generative nature of this model, it is capable of saccadic simulation in real time.
We demonstrated that the properties from its generated saccadic vectors closely match those of human observers given a
particular task and cognitive state. Many current models of vision focus entirely on bottom-up salience to produce
estimates of spatial Bareas of interest^ within a visual scene. While a few recent models do add top-down knowledge
and task information, we believe our contribution is important in three key ways. First, we incorporate task as learned
attentional sets that are capable of self-transition given only information available to the visual system. This matches
influential theories of bias signals by (Miller and Cohen Annu Rev Neurosci 24:167–202, 2001) and implements selection
of state without simply shifting the decision to an external homunculus. Second, our model is generative and capable of
predicting sequence artifacts in saccade generation like those found in visual search. Third, our model generates relative
saccadic vector information as opposed to absolute spatial coordinates. This matches more closely the internal saccadic
representations as they are generated in the superior colliculus.
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Introduction

The goal of many psychologists and neuroscientists who
study vision is to Breverse engineer^ the human visual and
oculomotor system: that is, to analyze an end product (e.g., a
sequence of eye movements) to understand the system that
produced it. To this end, researchers often use two different
complementary approaches: decoding and simulation.
Decoding underlying cognitive function has always been a
goal of experimental psychology, but the surging popularity
of Brain-Computer-Interfaces (BCI) [1] has led to an in-
creased interest in this approach, especially as it relates to
the use of classifiers on neural (e.g., [2]) and behavioral [3]
data. Simulation, on the other hand, uses generative algo-
rithms to understand cognitive processes by re-creating hu-
man-like behavior to determine the underlying cause.
Simulations are also prevalent in robotics and computer vision
applications [4]. We begin by first decoding human goals and
tasks using data from high-speed eye tracking, and then sec-
ond, we simulate relative eye movement properties using a
generative Bayesian Model.

The human retina has a variable distribution of photorecep-
tors, with the highest resolution in the central fovea. To bring
various parts of a scene or image to this high-resolution zone,
we move our eyes frequently with ballistic eye movements
called saccades. Fixations are periods of relative stability be-
tween saccades, typically lasting between 200 and 300 ms and
allowing efficient sampling of selected locations. The gener-
ation of eye movements involves a robust neural network [5]
and is influenced by bottom-up image salience [6, 7], expec-
tation [8], motion [9], top-down control [10], biases [11, 12],
and midlevel attention [13, 14].

One way of predicting human fixations is by finding areas
of interest in natural images. These salience maps are of inter-
est to both psychology and computer vision, and a popular
way of measuring the success of these algorithms is by com-
paring the predictions to actual human fixations (The MIT
Salience benchmark, 15). The most successful algorithms at
this benchmark have similarities to theories in human visual
processing. For example, the classic Itti and Koch [6] salience
model is based on Feature Integration Theory [15], and the
more recent and accurate deep learning models mimic layered
feature extraction in the early visual cortex [16]. Models of
this type have been used in applications such as image classi-
fication [17], object recognition [18], object segmentation
[19], and reducing false alarms in motion detection [20].
Models that combine information from multiple sources have
also been implemented such as [21] who combined bottom-
up, top-down, and mid-level visual processing. Multi-model
cognitive fusion [22, 23] has also been used to combine infor-
mation from multiple modalities.

These models typically treat the viewed scene coordinates
as an invariate map, or spatiotopic coordinates. While this is

an accurate representation of the viewed scene, the native
internal visual representation for humans is retinotopic [24],
meaning that the representation of visual information shifts
with every saccade. The superior colliculus (SC) is essential
for saccade and fixation generation, and superficial layers re-
ceive retinotopic input directly from the retina as well as other
areas [25]. Deeper layers integrate visual information with
other modalities and coordinate motor responses including
oculomotor responses deeper in the brain stem. Saccade gen-
eration in the SC is based on a retintopic map with neural
activation on this map triggering a saccade in the matching
retinal vector.

There have been attempts to incorporate specific retinal
properties into these salience maps and models. Adoubib
[26], for example, created a model of visual processing in
the human ventral visual pathway by including information
such as viewer distance and retinal sampling. The model
maintains the same attention selection mechanism as Itti and
Koch [6]—namely a winner take all fixation selection process
combined with temporal inhibition (IOR, 27)—but uses a
point cloud distribution to allow for non-rectangular represen-
tation andmodifies this further with known retinal and angular
artifacts. Similarly, Curtsurdis [4] has created more all-
encompassing models of the full visual pathways, including
an aspect of cognitive control. These models build on the
classic salience model [6] and add object maps, goals, saccad-
ic motor execution, and an overseer to control selection. The
goal module enhances or inhibits appropriate lower level sig-
nals, while the Overseer module focuses on reward of appro-
priate actions. Collectively, these models do approximate the
spatial distribution of fixations on a given image; however,
these models do not (a) predict other saccadic properties (ve-
locity, for example), (b) provide insight into the cognitive state
of the viewer, or (c) try to capture known patterns of fixation
sequences. Additionally, we know that fixation locations are
not independent and can be influenced not only by IOR (men-
tioned above) but by the visual system programming saccades
in parallel [28, 29]. In terms of vector sequences, for example,
we know that repeat vectors are more common in visual
search with an additional peak at reverse vectors [30, 31].

Eye movements provide an overt (but imperfect) measure
of attention, so it is tempting to suggest that eye movement
patterns can provide insight into internal cognitive states.
Fecteau and colleagues [32] discovered that both saccadic
reaction times and neural firing rates in the superior colliculus
were modified by the degree to which the visual stimulus in
their receptive field was relevant to the task. This has led to the
proposal of an attentional network which is tuned to goals and
priorities as much as to visual salience [33]. Performance in
cuing and search has also been shown to be influenced by the
current attentional set of the observer [34].

In a seminal experiment, Yarbus [35] demonstrated that dif-
ferent instructions could produce different patterns of eye
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movements for a given image. A single observer was shown the
painting BThe unexpected visitor^ by Ilya Repin and given
various instructions including the following: estimate the mate-
rial circumstances of the family, give the ages of the people in
the portrait, remember the clothing worn by the people, and
estimate how long the visitor had been absent from the family.
Patterns of eye movements were shown to be different depend-
ing on instruction (see Fig. 1), and this result has been replicated
for different tasks [36–38]. Task has also been shown to influ-
ence lower level saccadic properties such as number of fixa-
tions, gaze duration [39], and fixation duration [40]. Recently,
Kardan and colleagues [41] showed that task instructions not
only influenced saccadic amplitude and fixation duration, but
also modulated how these performance features were influ-
enced by low-level scene features. This suggests that while
instructions can influence how we move our eyes, the link
between task and eye movements may not be direct.

When we provide explicit instructions to our observers
regarding the nature of an experimental task, instructions are
probably one of many factors that influence an observer’s
internal attentional state. Attention to a task varies over time

as measured by behavior, self-report, and Alpha channel ac-
tivity [42] and could be modulated in a given task by the locus
coeruleus-norepinephrine (LC-NE) system to promote either
highly engaged (phasic) or disengaged (tonic) behavior [43].
To model how task influences saccadic selection, we propose
a model where current task or instruction is only one influence
to observers’ internal cognitive state, and this hidden internal
state is a driver of saccadic selection. This differs fromKardan
[41] in that we do not model scene features, but we do include
an intermediate mechanism—a hidden cognitive state—that
could account for the way that task mediates gaze control.
We also introduce an explicit temporal component that allows
this cognitive state to change over time within any given
instructed task. We also explore a variety of saccadic and
fixation features to determine which may be more diagnostic
of task.

Inferring a category, such as task, from a set of obser-
vations is called a classification problem in machine learn-
ing [44]. A number of recent studies have explored the
saccadic-task correlation using a classification approach;
that is, given only an observed set of eye movements, can

Fig. 1 Scene and instructions from Yarbus, (1967), Fig. 107. Reprinted with permission, 2017 (Springer)
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we accurately determine the task that the subject was
instructed to perform? Greene [45] demonstrated that a
simple set of saccadic features such as number of saccades,
mean saccadic amplitude, and mean fixation duration
could successfully predict the observer or the image being
viewed. However, their method was not able to predict
task. Recently, researchers using different datasets (tasks
and images) and different feature sets (learning algorithms
and decision rules) have had more success. Henderson
et al. [46] were able to classify Search and Reading tasks
at accuracies of up to 75%, which was well above chance
for the given tasks. Borji and Itti [3] were able to classify
the original data from Greene et al. [45] (34% accuracy,
chance was 25%) and also all seven of Yarbus’ original
tasks at above chance levels. Borji also went further by
identifying saccade metrics that are particularly influenced
by image-level properties, and therefore less useful for
classifying the instruction set irrespective of these proper-
ties. Specifically, they showed that the position of fixations
in an image only informed classifier accuracy for trials
within that same image (though they did not account for
spatial patterns like central bias [12, 47] or symmetry [48]).

In the present paper, we create a model of cognitive state
that is capable of generating saccadic properties based on
instructed task. We will start with a data set that has already
shown behavioral differences across task and (a) determine
which saccadic features are diagnostic of task, (b) infer
how cognitive state changes over time by clustering eye
movement properties, and (c) create a generative model
of eye movement vectors based on shifts of cognitive states
for given tasks. We use data from Dodd et al. [49], who
asked observers to perform one of four tasks, either search
for a specified target, remember a scene, rate its pleasant-
ness, or view the scene without any particular instructions.
They observed Inhibition of Return (IOR, which in this
case was defined as slower saccadic responses to probes
presented in a location that had recently been fixated) only
during the search task, and not during the others. Mills
et al. [40] further showed that these instructions generate
differing spatial and temporal saccadic properties, and fur-
ther, these saccadic properties are sufficient for human ob-
servers to infer another’s task [50] or search objective [51].
Given that their observers followed the instructions well
enough for this difference to emerge, we believe that eye
movements for these tasks should diverge in other ways
that could be discovered by our model. We began with an
exploration of various saccadic features to connect our
model to the recent literature and also to determine exactly
which saccadic and fixation properties were important for
accurately predicting instructed task. We included saccadic
latency (fixation duration), saccade duration, amplitude,
peak velocity, pupil size, and absolute saccadic angle based
on screen direction. Since it is currently unclear how to

effectively use spatial information across images [3], we
chose not to include region of interest or absolute coordi-
nate salience map information as input to the classifiers or
model. While many models of visual salience predict fix-
ation locations in screen or image coordinates, our predic-
tion of saccadic vector properties more closely matches
their internal representation as they are generated in the
Superior Colliculus [23]. While we do not propose to cre-
ate a neural model of saccade generation, we do propose a
cognitive model of late-stage saccadic generation.

Recent classifiers have been shown to be task-sensitive,
using mean fixation and saccadic data collapsed across indi-
vidual trials [3]. Since a model of saccadic generation would
have to work on the level of individual saccades, however, we
first looked at which saccadic properties, if any, could be
diagnostic of task from single saccades as opposed to saccadic
aggregates from the full trial.

In addition to eye movement patterns, discussions of cog-
nitive state should also include the pupil. Pupillary dilation has
been linked to degree of arousal [52], memory load [53], and
attentional load [54]. Recent studies have shown correlations
between pupil size and effects from the Stroop task [55] and
Inhibition of Return [56]. Aston-Jones and Cohen [43] pro-
posed in their adaptive gain theory that pupil size is regulated
in part by the locus coeruleus—norepinephrine system (LC-
NE). They propose two modes of LC neuronal activity:
Phasic—reflecting focused performance on an attended task;
and Tonic—which favors exploration over focus on a single
task. Posner and Fan [57] have also suggested LC as a key
structure in the Balerting^ function of attention. Since pupil
diameter closely correlates with LC neuronal firing frequency
[58, 59], pupil size can serve as an additional measure of
attentional focus in our model.

Properties included in classifier and model

• Latency
• Duration
• Amplitude
• Peak velocity
• Absolute saccadic angle
• Pupil size

Methods

Observers and Stimuli

Data used as input for the classifiers were first reported in
Dodd et al. [49]. Over 17,000 saccades from 53 observers
and 67 photographic images were coded as input to a set of
classifiers. Observers were randomly assigned to a group and
given one of the following four instructions: Search for the
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letter Z or N in the scene, memorize the scene and prepare for
a memory test at the end of the session (not actually tested),
rate the pleasantness of the picture from 1 to 7, or no specific
instruction was given and observers freely viewed the image.
All tasks lasted for 8 s and are hereafter referred to as Search
(n = 14), Memorization (n = 13), Preference (n = 14), and
View (n = 12). The visual search task included a probe after
6 s of search on some trials, so only the first 6 s of eye move-
ments were used from each task to equate conditions. Eye
movements were measured using an SR Research Eyelink 2
eye tracker sampling at 500 Hz. Nine-point calibration was
conducted for each observer, with average validation error of
less than .5° visual angle.

Saccade attributes were extracted from each saccade in-
cluding latency, duration, amplitude, peak velocity, and abso-
lute saccadic angle as compared to the screen’s horizontal
plane. The relative angle (see Figs. 2 and 3) and relative am-
plitude of the current saccade compared to the previous one
were also calculated.

Pupil size was normalized for all models to account for
individual differences and potential luminosity changes across
observers. The Z-score for mean pupil size during a fixation
was calculated based on the mean pupil size for each subject
and the Z-score of individual means accounts for individual
differences in pupil size.

Clustering

Clustering of attentional states based on saccadic proper-
ties was performed using the MATLAB clustering and
visualization toolbox (Abonyilab.com) with Dunn’s
Index used to select the optimal number of clusters.
Dunn’s Index is a score that reflects the cohesion within
a cluster and the separateness between clusters [60] and
was calculated for numbers of clusters from two to 14. We
chose 10 clusters as optimal for this data given that fewer
clusters and higher Dunn’s Index scores were preferred
(Fig. 5).

Discrete K-Means clustering with 10 centroids was per-
formed on the mean saccade data for each trial to assign the
trials to one of the 10 clusters to produce labels for compari-
sons. The value/location of the K centroids and assignment of
each observation to a centroid were learned by attempting to
minimize the within-cluster sum of squares of the error be-
tween each point in the cluster and cluster centroid.

arg min O ∑
k

i¼1
∑
x∈Oi

x−μik k2

whereOi is the set of observations currently assigned to cluster
I and μ I is the mean of points in cluster i. The basic K-means
algorithm requires the number of clusters to be set and uses
Euclidean distance for the centroid calculation, but many op-
tions are available [61]. These cluster labels were then cross-
tabulated with the original instructed tasks.

Dynamic Bayes Network

Bayesian networks are graphical models that treat evidence as
observations of random variables and edges as directional
dependencies between variables (see 62 for an overview and
tutorial). Probability distribution tables are learned for each
node and represent the likelihood of the random variable hav-
ing a value given only its prior probability and the probability
of its parents—variables it is directly dependent on. Our
Bayesian networks were trained and tested using the Genie
software package [63]. Learning the structure of the DBN
graph used a Bayesian graph search, although the exact search
algorithm is not reported in the package documentation. It
certainly behaves as others in this class of algorithm by com-
puting the posterior probability of potential graphs given the
observed data, and maximizing the choice of graph given the
observed data:

argmaxGP GjDð Þ

Parameter learning for all Bayesian Networks used the
Expectation Maximization (EM) algorithm [64].

Continuous saccadic data (see Fig. 3 for initial
distributions) were discretized into five bins with divisions
chosen to ensure equal numbers of saccades in each bin.
Bin sizes of three and seven were also tested to see if
binning granularity was important, but classifier results
were similar in each case. In previous research [45, 46],
input data has been preprocessed so that training data rep-
resented the mean value of that participant for an entire
trial. We replicated this approach for an initial classifier;
however, for the second classifier and the DBN model, we
chose to include all saccades from all trials. While this
increased the overall number of training examples to the
model, it also increased the variance introduced by indi-
vidual saccades.

a) rela�ve

b) absolute

Fig. 2 Illustration of saccadic angle (a) relative to the vector of the pre-
vious saccade or (b) compared to the absolute horizontal vector of the
screen
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Results

Section 1: Classifier

Recent research has established that classifiers can predict task
from aggregate trial data [3, 46, 65], so we divert briefly to
demonstrate that our chosen features can replicate these earlier
results (see Figs. 4 and 5). Ten unique training/testing sets
were generated for each of the following analyses by random-
ly sampling the dataset into independent 90/10% splits. We
performed this 90/10 sampling in three different ways to de-
termine how the classifier would perform over the full dataset,

across different images and across different subjects. The
first analysis used 90/10 splits with any sample chosen from
the full dataset, but we followed this with splits where the
training samples were chosen from 90% of the images and
tested on the remaining 10%. The final analysis split the
sampling from 90/10% of subjects. The final two analyses
were to test how well the classifier generalizes to new im-
ages or new subjects that were not included in the training
set. All results were compared using non-parametric
Wilcoxon signed-rank test (see 3). Saccadic features and
pupil size were trained with an augmented Naïve Bayes
network that was able to classify the full data set task at

Fig. 3 Density plots for saccadic features split by task. Saccadic features show potential for being diagnostic of task, in particular duration, amplitude,
and velocity

Fig. 4 Classifier accuracy for Augmented Naïve Bayes (a) Network and
Multinomial Logistic Regression (b) predicting task from saccadic and
pupil features. The Naïve Bayes outperformed the MNLR and was above

chance predicting View (V), Memorize (M), and Search (S) tasks, though
both classifiers had difficulty with the Preference (P) task
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53.9%, which is above chance (25%, t(50) = 3.45, p < .001)
and better than a logistic regression (MNLR) using the same
parameters (accuracy 45.8%; t(50) = 3.31, p < .001).
Training and testing across images were successful (53.6%,
t(50) = 3.45, p < .001), again with all tasks classified.
Training and testing across subject performed well overall
(41.2%, t(50) = 3.45, p < .0014), and all tasks except
Preference were accurately classified.

This approach is similar to Greene [45] and Henderson
et al. [46], in that we preprocessed the input data so that each
example represented the mean value of that observer for an
entire trial. We were able to classify task given the mean sac-
cadic data for a trial, but to generate individual eyemovements
or sequences of eye movements within a trial our generative
model should be able to infer task given the parameters of any
individual saccade within a trial. The augmented naïve Bayes
algorithm was, therefore, retrained with the full set of data
with each individual eye movement used to train or test the
classifier (Table 1).

Overall classifier accuracy to classify the task from just a
single eye movement was above randomized chance (t = 3.45,
p < .001) at 35.8% accuracy, though only Search (53%) and
View (45.5%) tasks were accurately classified. The resulting
classifier was also biased towards predicting the Search task,
which may have exaggerated its accuracy at the cost of reduced
Memorize (21.7%) and Preference (23.0%) task accuracy. This
differs from the earlier classifier trained on aggregate or sum-
mary trial data which was able to predict thememorize task (see
also 43) for successful memorize classification on aggregate

trial data. Using aggregate data as classifier input and test ex-
amples likely removes saccadic outliers that are otherwise more
difficult to classify. Classifiers built on each saccade as individ-
ual input and test samples, while less accurate on some tasks,
are a more complete representation of saccadic behavior.

The overall classifier results demonstrate that our data set
and algorithm can replicate other recent classifiers [3, 46, 65].
Our inability to correctly classify most trials in the Preference
task across subject demonstrates that, unsurprisingly, not all
tasks can generate distinct patterns of eye movements relative
to all other tasks. When forming a preference, individual dif-
ferences in eye movements may combine features of the other
tasks, such as looking for details, remembering, and just pas-
sive looking. Thus, the accuracy of a classifier will depend
critically on which tasks are included in the set [3, 45].

Section 2: Clustering Cognitive State

A computational cognitive model has a different primary goal
than a machine learning classifier. While a classifier strives to
produce the highest accuracy, a model strives to improve our
understanding of a complex system through simulation. A
classifier may make use of any algorithm that improves its
accuracy regardless of whether it is biologically plausible
and can, in fact, exceed human performance on some tasks
[66]. While computational cognitive models still may use ac-
curate predictions of experimental data as one measure of fit,
they must also match and test our theoretical understanding of
the cognitive processes involved, and an improved theoretical
understanding may initially come with reduced classification
accuracy for a single dataset. Though clusters of gaze location
have been used to highlight salient features in video [9], our
approach is the first we are aware of to cluster saccadic fea-
tures so as to infer underlying cognitive state. Our current goal
is to maintain as much of our classifier accuracy as possible
while moving from a classifier to a more formal model of top-
down influences in eye movement generation. Obviously, the
function of the cognitive systemwe are trying to model here is
not to classify eye movements, but to generate them.
Therefore, the final stage after creating the model is to test
the model’s ability to generate realistic saccade sequences.

Data training steps for the Dynamic Bayesian Network

1. Verify usefulness of saccadic features

2. Calculate the optimal number of hidden attentional states using Dunn’s
index

3. Cluster saccadic and pupil data
(a) Test that clusters of attentional state correlate with instructed task

4. Construct DBN model with new nodes for observed pupil size and
hidden attentional states

5. Test model against original data, and against expected saccadic
sequences

Fig. 5 Dunn’s Index calculates the compactness and separateness of
clusters. The highest index score suggests ten clusters as an optimal
number of hidden cognitive states

Table 1 Accuracy for all tasks for classifiers with training folds chosen
using the full dataset, by Image and by Subject. Asterisks indicate above-
chance classification

Overall
accuracy

View Memorize Preference Search

Training folds
All Data 53.9* 80.3* 44.3* 35.7* 55.0*
By Subject 53.6* 79.0* 42.0* 41.0* 51.0*
By Image 41.2* 67.8* 33.8* 24.2 38.8*
Individual saccade 35.8* 53.0* 21.7 23.0 45.5*
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In the previous section, we assumed that the internal state of
each observer reflected which one of the four instruction sets
they had been given, which in turn generated saccades from
separate—albeit potentially overlapping—distributions. We
were able to associate individual eye movements with a partic-
ular task instruction, but can this help us formulate a generative
model of the control settings that drive eye movement selec-
tion? If each distinct control setting generated saccades with
different characteristics, then we should be able to discover
these distributions through their saccadic behavior. It is likely
that each task would not correspond to a single cognitive state,
so we will not begin with that assumption. We begin by trying
to determine the number of hidden control settings used by
observers to generate saccades. Second, we will use a
Dynamic Bayesian Network (DBN) [67] to show how these
hidden control settings could be modeled as bias signals of state
change in a Dynamic Bayesian Network (DBN).

In Bayesian terms, cognitive state is a Bhidden^ node,
meaning that we cannot observe it directly with the present
data. We begin by determining the optimal number of distri-
bution clusters for cognitive state based on their statistical
cohesion. If attentional or cognitive task control settings gen-
erate different distributions of saccades as suggested in
BSection 1: Classifier^, the number of these distributions
should be derivable from the data. We can also test whether
these clusters roughly correspond to the classification accura-
cy seen in BSection 1: Classifier .̂ For example, given the
accurate classification of the Search task, we would expect
to discover a single cluster which includes most of these eye
movements and/or trials. The Preference task, however, could
simply reflect a frequent switch between clusters that other-
wise reflect searching, or inspecting. To differentiate the
instructed task from the inferred internal state, we will contin-
ue using Search, Memorize, Preference, and View as the tasks
from BSection 1: Classifier^ but refer to the assumed internal
states as searching, memorizing, judging, and inspecting.

The cross tabulation (Fig. 6a) demonstrates significant
overlap between instruction task and internal state (Chi2
[68] = 183, p < .001). For example, Cluster 5 shows strong
affiliation to the Viewing task, while Clusters 1, 8, and 10
are under-represented in Viewing. Likewise, Search has high
overlap with Cluster 1.While Cluster 5 is strongly represented
in all four tasks, this is not diagnostic of task and likely rep-
resents a default saccadic generation state, such as inspecting,
shared by many tasks and internal states. Given that the best
fitting clusters for the Preference task (clusters 1 and 5) also fit
with other tasks, it is not surprising that the classifier had the
most difficulty with this task. This could be evidence that
forming a preference simply alternates other tasks such as
searching and memorizing.

Not only might tasks contain multiple internal states, but
the transitions between states might differ. Even though state

nine is not common in any task (Fig. 6a), once an observer
enters that state, they are likely to continue (see Table 2) re-
gardless of state. States one and two are well represented in all
tasks; however, the transitions between these states differ. For
example, in the Viewing task, transitions to state two are more
likely from either state one or two, while Memory and
Preference tasks are more likely to transition to state one.
Search, which was one of the easier tasks to classify, was more
likely to maintain state one or two once the observer entered
that state. These transitional differences are also highlighted in
Fig. 6b–e which show the relative likelihood of transitions
compared to average transition performance across all tasks.
Given the temporal nature of these state transition differences,
we propose a model of cognitive state that is sensitive to
changes in state over time, even within a given task.

Section 3: A Model of Task and Internal States

Given that mean saccadic properties on trials can be formulat-
ed as distinct clusters (See Fig. 5) and that these clusters are
related to task instruction, we present a generative model of
eye movements where the internal state is represented by a
Dynamic Bayesian Network (DBN). We propose that internal
state of the visual system can be represented by a Markov
chain with saccades selected from a distribution influenced
primarily by the current internal state of the model. Choice
of state and state transition is handled by the DBN in such a
way as to avoid a selection Bhomunculus^ through a state
transition process which depends entirely on the current cog-
nitive state and experimenter instructions. This mimics the
bias signals for cognitive control as suggested by Miller and
Cohen [69] where the state is self-selecting as an integral part
of the DBN itself. An analogy for these bias signals used by
the authors was a Bself-switching railroad track^ and is com-
parable to the way a DBN switches temporal states using only
information that is internally available to the model. As seen
with the cluster/task cross tabulation, there is not an exact
overlap between instructed task and grouping of saccadic be-
havior suggesting that instruction alone is insufficient to de-
termine state. State transition analyses also suggest that pat-
terns of internal state change differently according to which
instructed task was given. Our DBN will learn these hidden
state transitions in order to improve the model beyond instruc-
tion task alone.

Saccades were generated by the model through a random
selection from saccadic property distributions as determined
by the cognitive state associated with the current state of the
model (Fig. 7a). The only input into state selection at time t is
the previous state (time t − 1) and input knowledge of the
instructed task (Figs. 7b and 8). Miller and Cohen’s [69] bias
signal is modeled as a random likelihood transition from one
internal state to another given the current state and task. While
instructed task will influence the successive states, it will do so
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in conjunction with internal state likelihood and according to
the learned joint probability distribution for the hidden state
transitions given a particular task. To learn these transitions,
we will use the individual saccade data (see classifier C from

previous section) which, while a less accurate classifier than the
mean trial data, will allow us to generate individual eye move-
ments with our model for a given instructed task. Although
BSection 1: Classifier^ and BSection 2: Clustering Cognitive

0% 20% 40% 60% 80% 100%

Memorize

Preference

Search

View
1 2 3 4 5 6 7 8 9 10a)

Fig. 6 a Cross tabulation mosaic of task condition and absolute
likelihood of a clustered internal state. Blocks represent proportion of
clustered saccades for each task/cluster combination. Since clusters are
based on individual saccades instead of mean trial values, the result ech-
oes the saccade classifier with View and Search being more highly

distinguishable. Transition heat maps for b View, c Search, d
Preference, and e Memorize represent the difference in likelihood from
the overall data that a task will observe a transition from state A (vertical-
axis) to state B (horizontal-axis)

Cogn Comput (2018) 10:703–717 711



State^ helped justify the choice of parameters to include in the
final model, neither section had a direct influence on learning
the structure or probability matrices of the model. We main-
tained the choice of saccadic variables and the learned optimal
number of states, but the probability distribution tables corre-
lating taskwith cognitive state were learned as part of themodel
using same cross validation scheme outlined below.

Prediction accuracywas again calculated for instructed task
given the eye movement properties of an individual saccade.
With the internal state as an intermediate, hidden state sepa-
rating the saccadic data from the instructed task, the newmod-
el was still able to predict the task with 36.4% accuracy and
was better than chance (t = 3.45, p < .001) as measured by the
Wilcox signed rank test. While improving the theoretical basis
of the model, we were still able to classify individual saccades
with the same accuracy (t < 1) as the original classifier
(35.8%). Task prediction was also less biased than the original
classifier with preference (23%) and memorize (25.4%)
roughly at chance, though they were still likely to be
misclassified as Search.

Although cross validation should prevent overfitting of the
probability distribution tables, we wanted to check our model
for overfitting from the variables themselves, and to determine
if all features are diagnostic in the scope of the original clas-
sifier. We removed saccadic and pupil features one at a time
and compared resulting models by their Aikake Information
Criterion (AIC) [70]. AIC is a measure of model fit which
compares likelihood scores penalized by model size and is
defined by the formula, where ln(M) is the log likelihood of
the trained model and P is the number of parameters:

AIC ¼ −2ln Mð Þ þ 2p

Although the DBN shifts focus from the classifier to the
generative model, it still performs better as a task classifier
(smaller AIC) than the Augmented Naïve Bayes despite the

additional parameter of the cognitive hidden state (DBN
AIC = 1,536,532; classifier AIC = 1,632,743). Since AIC al-
lows comparison of non-nested models, we also compared the
full DBNmodel with each possible reduced model to keep the
one with the lowest scored AIC. This process was repeated
iteratively until further reductions in model parameters did not
improve AIC score. Reducing the initial model (AIC =
1,536,532) by the first parameter showed an improvement
(smaller AIC) regardless of which parameter was removed,
with the exception of saccadic angle (AIC = 1,537,500). The
lowest score was for the model with pupil size removed
(AIC = 1,493,033). Removing additional parameters from this
model did not, however, result in lower scores (all AICs >
150,000). Removing most single parameters from the full
model improved the fit in the first stage, but improvements
did not extend to removingmultiple parameters. This suggests
that many parameters contained redundant information re-
garding the instructed task. This is consistent with Kardan
[65] who found that classifiers performed better if they
accounted for feature dependencies.

Generative models can be tested in ways other than classi-
fication. Since Dynamic Bayesian models are generative,
meaning that they are capable of generating new instances of
observations given a trained model, we used the completed
model to generate simulated parameters for 10,000 saccades.
These saccades were sampled from all tasks and attentional
sets and compared to the original saccades from observers’
data. If the model accurately reflects the generative process
of saccade selection given a specific task and state, then the
observers’ and model’s data should be comparable. We per-
formed a linear mixed effects model of human vs Bayesian
model for each saccade parameter given the subject and task
as fixed factors and cognitive state as a random factor. There
was no significant difference in the human and Bayesian data
sets (all Fs < 1) suggesting that the model was able to accu-
rately capture these parameters.

Finally, since the DBN should be able to capture temporal
saccadic dependencies in observers’ data, we wanted to test
whether the model was also capable of reproducing temporal
patterns. One such pattern is the large increase in forward sac-
cades and the smaller increase in return saccades when consid-
ering the current saccadic angular vector compared to the pre-
vious vector. Observers’ data for the current tasks (Fig. 9b) is
comparable to saccadic analyses from similar research [13, 14]
in that saccadic angle at given time t(x) is dependent on the
angle of saccade at time t(x − 1). Saccades generated from the
classifier in BSection 1: Classifier^ do not code these temporal
dependencies and simply choose from the distribution of typi-
cal absolute angles. These absolute angles have an overall hor-
izontal bias in absolute angle, resulting in a relative angle bias
of repeating this direction. The DBN does code temporal de-
pendencies, however, and the relative saccadic angle of sac-
cades generated from the DBN shows the tendency to repeat

Table 2 Table of most likely state transitions in absolute values. Given
the task and previous state. Btransitions^ that repeat the same cluster mean
that internal state is most likely to remain the same over time for that task

Previous state View Mem. Pref. Search

1 2 1 1 1

2 2 1 1 2

3 8 8 3 3

4 4 4 4 5

5 4 5 5 5

6 4 5 5 5

7 2 2 2 1

8 8 3 8 8

9 9 9 9 9

10 4 5 5 5
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saccadic direction and the smaller tendency to reverse direction
found in other search studies [13, 14].

General Discussion

While a Bayesian representation is not a neural level model,
we believe that our DBN is grounded as a plausible cognitive
description of neural task states and saccadic selection. The
prefrontal cortex (PFC) is associated with executive control,
including an Battentional set^ or cognitive state that provides a

framework for selecting task-relevant information [71, 72].
Different regions of the PFC activate depending on the nature
of this information and processing resources needed for a giv-
en attentional set [72]. Switching between these states could
be implemented in the PFC through a control system that
biases activity to the appropriate network given any combina-
tion of sensory input, current state, and desired consequences
[69] or possibly directed by the measured distance between
current state and subjective goal [73]. Once selected, the ap-
propriate state would guide top-down selection of eye move-
ments through connections to the frontal eye fields [74, 75].

Fig. 7 Dynamic Bayesian
Network a with hidden cognitive
state of the observer influenced
only by instructed task and state at
previous time. State influences
the selection of saccadic
properties while that state is
active. Nodes inside the temporal
plate are free to change with each
time unit (saccade), while Task is
held steady throughout the trial.
The circular gray arrow represents
temporal dependency and in this
model is restricted to the hidden
cognitive state and saccade angle.
The same model b with time
Bunrolled^ to better show the
temporal dependency. Task is
only set once for the entire
sequence, while cognitive state
and saccadic direction have the
potential to update on every time
unit based on the original task and
the previous state. Other eye
movement and pupil properties
also change every time unit but
only based on the current
cognitive state
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While our model only considers top-down influences of sac-
cade generation, it could be extended to include bottom-up
generation as has been done with the Superior Colliculus
[76], with input from a salience map [2] or priority map [21,
33]. For example, Corbetta and Shulman [77] suggest distinct

but overlapping networks drive attention, with a temporo-
parietal network driving bottom-up attention, which can inter-
rupt activity in the frontal-parietal network associated with
top-down attentional control, via a trigger in inferior frontal
cortex. In the context of our DBN model, states could be

Fig. 8 Boxplot of the confusion
matrix for the Dynamic Bayesian
model (a). Saturated boxes are
proportion of saccades correctly
matching the generating task,
while faded boxes are proportions
that are misclassified as one of the
other three tasks. For comparison,
the classifier for individual
saccades from BSection 1:
Classifier^ is shown (b)
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implementations of top-down attentional control, and low lev-
el information could provide information in the decision to
switch states. It should be noted that attentional control and
salience information might not be simply additive, as shown
in Kardan [41].

Although Adaptive Gain Theory (AGT) [78] suggests that
pupil size should correlate with internal cognitive state [79],
our model was able to maintain an accurate representation of
task and saccadic features without the use of pupil size as an
additional variable.While models of foraging are improved by
including pupil size and LG-NE [80], our pupil size was
modeled as being influenced by cognitive state in the model
to a similar, yet independent, extent as saccadic properties. It is
possible that these saccadic properties contained redundant
information making pupil size unnecessary. Our cognitive
state did differ from AGT in that it consisted of five discrete
stages of pupil size as opposed to a binary split of tonic and
phasic mode [43, 78]. The original data for our study [49]
were also not conducted under ideal conditions for detecting
pupil size differences, so it is possible that pupil data could
contribute more reliable state information when collected un-
der conditions with better light control. Our final model was
able to maintain the same classification accuracy from the data
of a single saccade as the augmented Bayes Classifier in
BSection 1: Classifier^ while improving the overall

information criteria for the full network and more accurately
accounting for what we know of attentional state and cogni-
tive control. It is also possible that pupil responses would best
be modeled as a separate network from saccadic generation,
although the network learning in the section-one classifier
optimized pupil size as integrated with saccadic features.

Wewere also able to train a Bayesian classifier to recognize
the instructed task given only saccadic attributes as input data.
Two tasks, Search and View, were classified consistently
above chance even when only given input from a single eye
movement. The accuracy of predicting the Search task was
expected since the original data set showed behavioral differ-
ences in generating observable Inhibition of Return [49] and
other saccade properties [40]. Saccadic tendencies to continue
forward and the increase in return saccades in particular be-
come pronounced in the temporal DBN model where
intersaccadic dependencies could be learned. Memorize was
also classified above chance but only when mean eye move-
ment data from the entire trial was included. The Preference
task was only classified above chance when pooling data from
all images and trials and did not generalize across subjects.

Given the generative nature of this model, it is capable of
saccadic simulation in real time. We demonstrated that the
properties from its generated saccades closely match those
of human observers given a particular task and cognitive state.
Future work is planned to include bottom-up influences as
well as individual differences to separate the contribution of
top-down cognitive state and the LC-NE system.
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