
2

Assessing the Effect of Programming Language and Task

Type on Eye Movements of Computer Science Students

NILOOFAR MANSOOR and COLE S. PETERSON , School of Computing, University of

Nebraska-Lincoln, United States

MICHAEL D. DODD , Department of Psychology and the Center for Brain, Biology, and Behavior

(CB3), University of Nebraska-Lincoln, USA

BONITA SHARIF , School of Computing, University of Nebraska-Lincoln, United States

Background and Context: Understanding how a student programmer solves different task types in different

programming languages is essential to understanding how we can further improve teaching tools to support

students to be industry-ready when they graduate. It also provides insight into students’ thought processes

in different task types and languages. Few (if any) studies investigate whether any differences exist between

the reading and navigation behavior while completing different types of tasks in different programming

languages.

Objectives: We investigate whether the use of a certain programming language (C++ versus Python) and

type of task (new feature versus bug fixing) has an impact on performance and eye movement behavior in

students exposed to both languages and task types.

Participants: Fourteen students were recruited from a Python course that taught Python as an introduc-

tory programming language.

Study Method: An eye tracker was used to track how student programmers navigate and view source

code in different programming languages for different types of tasks. The students worked in the Geany

Integrated Development Environment (IDE, used also in their course) while eye-tracking data was collected

behind the scenes making their working environment realistic compared to prior studies. Each task type had a

Python and C++ version, albeit on different problems to avoid learning effects. Standard eye-tracking metrics

of fixation count and fixation durations were calculated on various areas of the screen and on source code

lines. Normalized versions of these metrics were used to compare across languages and tasks.

Findings: We found that the participants had significantly longer average fixation duration and total fixa-

tion duration adjusted for source code length during bug fixing tasks than the feature addition tasks, indicat-

ing bug fixing is harder. Furthermore, participants looked at lines adjacent to the line containing the bug more

often before looking at the buggy line itself. Participants who added a new feature correctly made their first

edit earlier compared to those who failed to add the feature. Tasks in Python and C++ have similar overall

fixation duration and counts when adjusted for character count. The participants spent more time fixating

on the console output while doing Python tasks. Overall, task type has a bigger effect on the overall fixation

duration and count compared to the programming language.

This work is supported in part by the U.S. National Science Foundation under Grants No. CNS 18-55753 and No. CCF

18-55756.

Authors’ address: N. Mansoor and C. S. Peterson, 256 Avery Hall, University of Nebraska-Lincoln, Lincoln NE 68588;

e-mails: {niloofar, cole.scott.peterson}@huskers.unl.edu; M. D. Dodd, B82 East Stadium, University of Nebraska-Lincoln,

Lincoln, NE 68588; e-mail: mdodd2@unl.edu; B. Sharif, 1100 T St., 103 Schorr Center, University of Nebraska-Lincoln,

Lincoln NE 68588; e-mail: bsharif@unl.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org .

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1946-6226/2024/01-ART2 $15.00

https://doi.org/10.1145/3632530

ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://orcid.org/0000-0001-5481-7014
https://orcid.org/0009-0009-3572-9727
https://orcid.org/0000-0001-5041-3725
https://orcid.org/0000-0002-5178-7160
mailto:permissions@acm.org
https://doi.org/10.1145/3632530
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632530&domain=pdf&date_stamp=2024-01-14

2:2 N. Mansoor et al.

Conclusions: CS educators can better support students in debugging their code if they know what they

typically look at while bug fixing. For new feature tasks, training students not to fear edits to learn about

the code could also be actively taught and encouraged in the classroom. CS education researchers can benefit

by building better IDE plugins and tools based on eye movements that guide novices in recognizing bugs

and aid in adding features. These results will lead to updating prior theories on mental models in program

comprehension of how developers read and understand source code. They will eventually help in designing

better programming languages and better methods of teaching programming based on evidence on how

developers use them.

CCS Concepts: • Human-centered computing → Human computer interaction (HCI) • Software and its

engineering → Language types • Applied computing → Education • Social and professional topics

→ Software engineering education;

Additional Key Words and Phrases: Program comprehension, source code, C++, Python, bug fixing, new

feature tasks, programming education, learning behavior, eye-tracking study

ACM Reference format:

Niloofar Mansoor, Cole S. Peterson, Michael D. Dodd, and Bonita Sharif. 2024. Assessing the Effect of Pro-

gramming Language and Task Type on Eye Movements of Computer Science Students. ACM Trans. Comput.

Educ. 24, 1, Article 2 (January 2024), 38 pages.

https://doi.org/10.1145/3632530

1

S

l

c

g

w

o

a

m

a

t

u

u

a

t

b

s

c

a

u

m

t

e

t

C

c

n

A

 INTRODUCTION

oftware developers often use several different programming languages when implementing so-
utions to problems [74 , 76]. Some problems are easier solved using features of one language
ompared to another. Tshukudu and Cutts offer a perspective on the mastering of several pro-
ramming languages [74]. The choice of programming language has been a long debated topic
ith no clear empirical evidence of one faring better than another from the usability perspective
f the developer [67]. In addition to the possibility of using different programming languages,
 software developer typically completes various types of tasks when building software: imple-
enting new features, fixing bugs, testing, or refactoring existing code [32]. These tasks require
 developer to comprehend the code first before they make a change and modify it [16]. Similar
o professional developers, computer science and software engineering students also learn and
se different programming languages while learning computing concepts, and studying how they
nderstand and work with these different languages provides valuable information for teaching
nd learning purposes. Empirical evidence on the effect of programming languages and various
ypes of tasks can help build stronger theories on program comprehension and help with designing
etter methods for teaching programming.
Since the 1980s, there has been research published on mental models in program comprehen-

ion [12 , 35 , 50 , 55 , 69 , 79]. Besides surveys and think aloud, another method to study program
omprehension, which can be defined as the cognitive processes of understanding code to build
 mental representation of the program [59], is to use eye-tracking technology [25 , 29 , 65 , 82] to
nderstand what a person is paying attention to while working on a program. The eye move-
ent data can be used to study a person’s visual attention and make informed hypotheses about

heir thought processes and strategies used [14 , 49]. Crosby et al. published one of the very first
ye-tracking studies on how students read a binary search algorithm [17] in 1990. However, eye
racking did not become popular as a method of data collection until after 2006 [8 , 9 , 10 , 24 , 46 , 62].
rosby found programmers to move between the code and comments instead of just reading the
ode linearly. A practical guide was recently published on how to properly conduct software engi-
eering and program comprehension studies [61]. A prior eye-tracking study by Abid et al. used
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.1145/3632530

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:3

e

s

o

c

n

l

a

d

5

t

f

t

l

a

i

c

t

n

s

a

c

i

t

T

r

I

i

A

v

o

N

p

(

r

t

n

t

i

s

l

c

s

1

t

ye movements to externalize the mental model of developers predicting whether top-down ver-
us bottom-up models [79] were used [1]. This study was done on the Java programming language
n the task of summarizing methods. Another study by Turner et al. compared C++ and Python
ode shown as an image for bug localization tasks (where the buggy line needed to be spotted but
ot necessarily fixed) [75]. The first step in fixing a bug is to find it. This process of localizing the

ine where the bug is on is called bug localization. The next step is the actual fix where the edits
re made. However, the study only used small code snippets, and the tasks were relatively easy. It
etermined the rate at which people looked at a buggy line of code between C++ and Python.
Students are often faced with many challenges with learning new programming languages [27 ,

8 , 59]. To help students navigate the initial years of learning programming better, it is imperative
o study their behaviors in different settings and use different modalities of data collection. The
ocus of this article is to understand program comprehension [12 , 59 , 72 , 79] in CS students while
hey perform two task types: bug fixes and new feature additions in two different programming
anguages. Our study is rooted in the program comprehension literature in CS education [15 , 59]
nd software engineering [72]. Student behavior is observed via tracking their gaze as well as ed-
ts as they solve the tasks. Standard measures such as fixation count and durations over selected
hunks of code that act like beacons [12 , 80] are analyzed both quantitatively and visually. To
his end, an eye-tracking study is presented that seeks to measure any differences in reading and
avigation problem solving behavior in language (C++ versus Python) and task type (bug fix ver-
us new feature). The main motivation behind this study was to determine empirically if there
re inherently any differences in eye movement patterns or attention to specific programming
onstructs between two different programming languages (C++ and Python), and between solv-
ng two different software tasks (adding a new feature and bug fixing). As far as we are aware,
his is the first study to compare differences in language and task using eye-tracking equipment.
his is important, because all prior studies mainly focus on Java, short code snippets, and/or un-
ealistic environments that do not generalize to how users (students/experts) actually code in an
ntegrated Development Environment (IDE) . 1 Another gap that this study bridges is study-
ng comprehension of programs in different languages using eye trackers in distinct task types.
lmost all tasks studied in the past are related to summarization, but as developers, we perform a
ariety of tasks [34 , 42] to solve a problem. This article provides a study environment setup that
thers can replicate to conduct more realistic eye-tracking studies on various other tasks as well.
The study presented in this article is fundamentally different from the Turner et al. paper [75].

ot only do we use an additional task type, but the study instrumentation, data collection, and
rocessing are all uniquely different as well. The code snippets used in Reference [75] were short
10–12 lines) and shown as images with no way of interacting with them, which makes the expe-
ience unrealistic. In addition, there is no prior eye-tracking paper that investigates different task
ypes done by the same user. There is also no eye-tracking paper that we know of that investigates
ew feature addition. This is because of the inherent difficulty in conducting an eye-tracking study
hat involves editing [22 , 23].

To summarize, the study presented in this article bridges many of the above mentioned gaps
n empirical studies done in program comprehension by (1) using longer and more complex code
nippets for C++ and Python, (2) testing two different types of software tasks: new feature and bug
ocalization, (3) using a realistic IDE setting (namely, the Geany IDE) where the student developer
an compile, edit, and run the code while working on a task, and (4) providing line-based analy-
is (derived from the program comprehension model literature [12 , 79]) of eye movements both
 See Abid et al. [2] for an example where they replicated a short code snippet study with larger realistic programs showing

hat the results are different.

ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:4 N. Mansoor et al.

q

g

w

l

i

t

f

2

T

v

w

g

m

R

A

uantitatively and visually via scarfplots. The individual behavior is compared across the lan-
uages and tasks. Later as part of future work, we plan to evaluate different program complexities
ithin each task type and do a comparative study.
The contributions of this article are as follows:

• First eye-tracking study comparing student behavior on different task types (new feature
and bug fix) in two different programming languages (C++ and Python).

• A study design setup that makes use of a realistic IDE (Geany) where students interact
with, scroll, edit, and modify the code freely (instead of images used in prior work). The
code, requirements, and console output were all part of the tracking screen. This setup for
study design would be more beneficial than just viewing the code.

• Usage of two unique analysis methods: (a) tracking eye fixation durations and transitions
on logically selected code lines for tracking navigation behavior during the task and (b)
using scarfplots to visualize these transitions across time.

• Insights into the student behaviors (reading, navigating, editing) for bug fixing and new
feature tasks across languages. The evidence suggests that bug fixing is harder than new
feature addition tasks (significantly longer average fixation duration and total fixation du-
ration adjusted for source code length). Students looked at lines adjacent to the line con-
taining the bug more often before looking at the buggy line itself. Participants who added
a new feature correctly made their first edit earlier compared to those who failed to add the
feature. Python and C++ have similar overall fixation duration and counts when adjusted
for character count. Evidence suggests that task type has a bigger effect size on the over-
all fixation duration and count compared to the programming language. This is a strong
indication that the task type is truly important and is the biggest factor in determining
performance.

• A complete replication package of the eye-tracking dataset collected, stimuli, scripts, and
code to facilitate future replication with other tasks.

The article is organized as follows. We formally state our research questions in Section 2 . Re-
ated work is explored in Section 3 . We describe our method in Section 4 . Results are presented
n Section 5 . Section 6 presents the discussion and implications of our work to CS educators in
he classroom. Section 7 concludes the article highlighting the contributions and paving way for
uture work.

 RESEARCH QUESTIONS

he four research questions this study seeks to address are as follows:

• RQ1: What are the differences between reading and navigation behavior in two program-
ming languages: C++ and Python?

• RQ2: What are the differences between reading and navigation behavior between two task
types: bug fixing and feature addition tasks?

• RQ3: What behaviors do developers engage in during a bug fixing task?
• RQ4: What behaviors do developers engage in during a new feature task?

The first research question (RQ1) seeks to understand how developers navigate between the
arious parts of the development environment, such as source code, output, and requirements,
hen C++ and Python are used. Investigating this could tell us how long developers spend debug-
ing in different languages and how they navigate between the output console, code, and require-
ents. The second research question (RQ2) seeks to understand similar behavior differences as
Q1 but in the context of how developers read and navigate two types of tasks. The third research
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:5

q

a

o

C

b

s

3

I

t

r

p

p

3

L

o

c

h

e

s

c

m

t

t

d

g

r

p

l

b

l

l

s

s

i

s

i

f

s

u

h

e

c

d

c
uestion (RQ3) tries to understand the behaviors developers use while trying to localize and fix
 bug in both the C++ and Python languages. The fourth research question (RQ4) looks at devel-
pers’ editing behaviors when given a set of requirements to implement in existing code in both
++ and Python. Since the nature of the two types of tasks is distinct and different, programmer
ehavior while working on the two types of tasks may vary. Their behavior may also vary when
olving problems in each language.

 RELATED WORK

n this section, we first present related computer science education work to emphasize the impor-
ance of program comprehension in relation to teaching and learning. We also present eye-tracking
elated work from program comprehension and software engineering literature to show the im-
ortance of using eye tracking in studying attention and program comprehension. In addition, we
rovide a list of models and theoretical frameworks that are related to this line of work.

.1 Computer Science Education—Learning to Program

earning programming involves reading and comprehension, which in turn means that findings
f programming comprehension studies can help computer science educators with shaping their
ourse content and updating their teaching methods to enhance learning. There is a challenge,
owever, in relating the findings from empirical studies to teaching methods and learning. Izu
t al. provide some examples of teaching methods and materials related to program comprehen-
ion [27]. In their critical review, Schulte et al. [59] analyze and compare the different programming
omprehension models and provide some insights on how these models can be applied to teaching
ethods and provide students with better and more effective learning tasks. They conclude that

he role of domain knowledge for program comprehension should be highlighted more in educa-
ion, the instruments used in empirical studies might be useful to test learning outcomes, and the
ifferences in expert and novice understanding of programs should also be discussed and investi-
ated in programming education. They state that experts have a flexible and navigational mental
epresentation (i.e., their representations are more than the sum of the elements from reading) of
rograms, which is in line with findings of Busjahn et al. [14] who found that novices have a more

inear reading method when working on programs compared to experts. Additionally, There have
een studies on challenges and barriers in learning how to program, and how the programming
anguage affects learning. Stefik et al. [71] conducted a study on how novices learn syntax, and how
earning varies across different programming languages. Their results showed the importance of
yntax for novice programming, how variations in syntax affect the accuracy rate, and that some
yntactic designs in languages were easier to comprehend for novices compared to others.

Due to the importance of learning programming, computer education researchers are interested
n how students read and trace code, which is directly related to code comprehension. There are
everal works that have investigated the relationship between reading, tracing, and writing skills
n programming students who have recently started to learn how to code [18 , 36 , 37 , 78]. They all
ound direct relationships between tracing and reading code and code comprehension, and that
tudents who write better code are better at tracing and explaining it as well. In this article, we
se eye tracking as a method to track student gazes on the code, which can give us insight into
ow they trace and understand code to solve specific problems.
There are several other approaches for analyzing the patterns of learning in students. Allevato

t al. [4] analyzed the sequence of submitted assignments from students and allowed them to
hange their code so that it could pass the grading criteria and test cases. They realized that stu-
ents who did better on assignments made more increasing changes and worked incrementally,
ompared to students who did poorly on assignments who made decreasing changes. Mansoor
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:6 N. Mansoor et al.

e

g

l

c

n

l

m

d

t

t

p

p

w

u

i

p

e

c

o

a

M

3

I

i

F

d

t

j

e

g

w

s

o

h

n

T

r

S

n

a

fi

m

O

A

t al. [39] studied how students comprehend and learn the Alloy language, a specification lan-
uage based on first-order logic. They created detailed tutorials for all participants, taught the
anguage in some classes, and recruited some students from those classes. Additionally, they re-
ruited non-novices who already knew the language, to compare the work patterns of novices and
on-novices. They found a similar pattern of incremental changes when looking at the Alloy ana-

yzer interaction logs, and that novice participants who made more edits and executed the models
ore often, had higher accuracy scores. Piech et al. [54] used another method to model how stu-

ents learn, studying how they get to their final solution by capturing snapshots from compilations
o analyze the changes between each compile. They present how their modeling can inform about
he similarity and differences of learning patterns, and be a predictive model about each student’s
rogress over the course of an assignment. We believe that using eye tracking while studying a
articipant’s problem solving patterns, gives us more insight into how they make changes and
hy they make those changes on code, and learning these patterns can be very beneficial for ed-
cational purposes. If, as an instructor, you are able to see how your student is reading the code

n real time, then you can instruct them to correct their focus so they can get to the bug quicker.
Previous studies have also investigated the different approaches programmers employ to achieve

rogram comprehension. When tasked with a fill-in-the-blank line in a program, programmers
mployed several different strategies to understand the program before filling in the line with the
orrect code [19]. The authors found that most programmers began trying to identify the subgoals
f a program such as looping through an array or a maximum algorithm. If a failure to understand
 subgoal occurs, then additional strategies are employed to resolve the failure. Margulieux and
orrison et al. have also studied subgoal labels in Python and Java [41 , 43].

.2 Eye Tracking in Program Comprehension

n recent years, eye-tracking studies have been performed to investigate program comprehension
n novice and expert developers. In this section, we present some studies that are closely related.
or further information on the state of eye-tracking studies done on program comprehension, we
irect the reader to prior systematic literature reviews [46 , 62].
Given the importance of reading in code comprehension tasks, it logically follows that impor-

ant insights can be gained from tracking eye movements while participants work on code. Bus-
ahn et al. [15] present eye tracking as a tool to complement the methods used in computer science
ducation research. Eye movements are an objective resource when it comes to studying a pro-
rammer’s mental model and reading patterns [1 , 50]. Eye movements are a proxy for attention,
hich provide insight into what information people are considering and in what order they do

pecific tasks. Given these properties and what can be learned from eye-tracking data, it adds a lot
f value to studies that want to explore comprehension through analyzing reading patterns.
Busjahn et al. conducted a study to look into the differences in how individuals read code versus

ow they read words, with an additional focus on programmer expertise [14]. Fourteen novices and
ine professional software developers had their eye movements tracked while they read Java code.
hey found that novices looked at code in the same linear fashion that is observed when individuals
ead text (approximately 80% of the time). Experts, however, read code in a much less linear fashion.
ince this study’s focus is on comparing reading patterns between experts and novices, they did
ot ask the participants to work on various types of tasks and read code in different languages. Our
rticle tries to compare comprehension patterns in different types of tasks and languages instead.

We summarize a few relevant studies done using eye tracking in the program comprehension
eld. Peterson et al. examine lines developers familiar with open source systems view during sum-
arization and try to correlate line length with the total duration of time spent on the line [51].
ne of their findings is that smaller methods tend to have shorter overall fixation durations but
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:7

h

f

t

n

e

t

i

e

t

t

r

a

c

a

t

w

a

s

t

a

t

i

f

e

s

t

e

a

o

a

b

s

w

l

p

i

d

v

i

c

t

t

p

t

f

s
ave significantly longer durations per line. In another study the authors also investigated the in-
ormation seeking behavior via eye movements of developers on Stack Overflow, which showed
he importance of code snippets in the questions and answers, and showed that participants did
ot look at the title of a post, tags, or votes compared to the rest of the text [53]. Saddler et al.
xamine developer reading behavior on Stack Overflow while they search for information related
o fixing bugs and building new features [57]. However, here their focus was more on the read-
ng patterns on Stack Overflow instead of the code itself. Kevic et al. conducted one of the first
ye-tracking studies on bug fixing in open source software in the Eclipse IDE using an early pro-
otype of the iTrace framework [33]. Their study investigated how developers navigate change
asks, and they found that developers focus on a few methods while working on the tasks, and
ead small parts of the code within those methods to complete the tasks. Jbara et al. conducted
n eye-tracking study to measure the time and effort spent reading and understanding regular
ode [28]. They define regular code as code that includes repetitions of the same basic pattern
nd is considered to be significantly longer than a non-regular version. They point out that ini-
ial code segments are read more than the later ones in regular code and also that code reading
as far from being linear, as is also pointed out by Busjahn et al. [14]. Obaidellah et al. [47] look

t novice programmer gaze patterns on pseudocode using eye tracking on 51 undergraduate CS
tudents showing that as difficulty increases, the regressions between areas of interest also tend
o increase. Hu et al. demonstrate that high-performing students had long fixation durations for
nalytical problems (more structured) and the problem-solving stage, whereas shorter fixations at
he problem exploration stage of interactive problems (less structured) [26]. This study also uses
mages and short code snippets. Titus et al. showed via an eye-tracking study that CS students
ound reading error messages equally hard compared to source code [7]. Abid et al. conducted an
ye-tracking study analysis of the use of top-down versus bottom-up models used during code
ummarization tasks [1]. They found that, on average, experts and novices read methods using
he bottom-up (more focused) mental model than using top-down (bouncing around), and on av-
rage, novices spent longer gaze time during the bottom-up process than experts. Aschwanden
nd Crosby show that beacons are usually present in code when the longest fixation duration is
ver a thousand milliseconds [6]. This study shows that beacons can be based on the code content
nd domain of study.

Turner et al. [75] conducted an eye-tracking study comparing the accuracy and speed of both
ug fixing tasks and overview tasks written in Python and C++. They found that there were no
ignificant differences in accuracy or timing between the tasks based on the language they were
ritten in, but they did find that there was a significant difference in the fixation rate on buggy

ines of code between Python and C++. This is the only previous study we are aware of that com-
ares two programming languages for bug localization and program overview tasks. Our article,
n addition to using C++ and Python, also looks at different types of tasks that possibly require
ifferent behaviors to perform them correctly, as by nature, a programmer will approach a bug fix
ery differently from a feature addition. In addition, it is a more realistic study that covers real-
stic tasks that are more than just a few lines long. Our study is fundamentally different in data
ollection and instrumentation as well. Moreover, a more comprehensive visualization of fixation
ransitions between the lines of code is presented via scarfplots.

Recently, Kather et al. [30] studied code composition and planning while programming and
hey investigated the effects of composition strategies and familiarity with code on program com-
rehension in an eye-tracking study with students. Using eye-tracking data and retrospective in-
erviews, students’ reading patterns were analyzed, and their mental models were studied. They
ound that familiarity with the template of the program makes it easier to create schemata. This
tudy also uses images for the stimuli and excessively large areas of interest to analyze the data,
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:8 N. Mansoor et al.

w

d

o

u

t

w

3

I

p

a

c

s

t

t

t

c

o

b

h

t

m

b

a

m

C

b

a

s

p

t

K

w

p

p

i

a

c

w

P

n

s

o

o

A

hich might miss some intricate details of how students navigate between chunks of code. It also
oes not allow the students to interact realistically with the code snippets.
To the best of our knowledge, we are not aware of any studies that compare eye movements

n C++ and Python with respect to different types of software tasks in realistic scenarios, such as
sing an IDE. We bridge this gap in the literature and add to the empirical evidence by discussing
he differences and similarities of comprehension behaviors of student programmers who have
orked on these different tasks.

.3 Models in Program Comprehension

n this section, we review various models and theoretical frameworks in the field of program com-
rehension. Program comprehension is a sub-field of software engineering that deals with building
 mental representation (albeit subjective) of the code while solving a task. Storey et al. provide a
onsolidated review of all the theories, methods, and tools developed in the software engineering
pace for program comprehension [72].

Schulte et al. compare and contrast different program comprehension models (from an educa-
ional perspective) and discuss how a block model [58] for program comprehension is mapped
o various other prior models [59]. Several theories were proposed in the early 1980s. Brooks in-
roduced the concept of top-down comprehension [12], driven mainly by a hypothesis and bea-
ons [80] in the code. Soloway and Ehrlich used a similar model using programming plans or rules
f discourse that are used to form a mental representation [70]. Schneiderman et al. present a
ottom-up comprehension model where programmers start with individual code items to get to
igher level abstractions of what the code does [66]. Pennington et al. discuss a framework where
wo models, program/control flow and data flow, evolve simultaneously [50]. Letovsky provides a
ore opportunistic model approach where programmers use and switch between top-down and

ottom-up models as needed [35]. Von Mayrhauser et al. build on previous models to introduce
n integrated metamodel that consists of a top-down model, a program model, and a situation
odel [79] where programmers switch between these and build them simultaneously.
With respect to determining program complexity from a cognitive perspective, Duran et al. use

ognitive Load Theory and the Model of Hierarchical Complexity that extends Soloway’s plan-
ased analysis of programs to a finer granularity [21]. Ajami et al. also look at code complexity
nd how syntax, predicates, and idioms could have an effect on it [3]. They found for loops to be
ignificantly harder than ifs and that counting down is harder than counting up. However, they
oint out that there could be other factors besides the use of known idioms and syntactic struc-
ures that could affect code complexity, and more empirical evidence is required. Katzmarski and
oschke provide a programmer centric view of complexity and show that this does not coincide
ith complexity metrics rankings [31]. They point out that data-flow metrics align better with
rogrammer viewpoints than control-flow metrics but even that is loosely correlated. Yu et al.
rovide a survey on software complexity metrics that could be used to determine task variability
n program comprehension studies [83].

Izu et al. identify learning activities that address key components of program comprehension
nd provide a theoretical learning trajectory to guide teachers in selecting further activities in CS
ourses [27]. Tshukudu and Cutts propose a model describing how student novices are affected
hile learning different programming languages [74]. They studied students transitioning from
ython to Java and vice versa and proposed ways to ease the transition process. Teague et al. use a
eo-Piagetian framework that describes cognitive development stages that students go through to
tudy simple programming concepts [73]. They show that students make many mistakes and focus
n superficial aspects of the task until they reach the operational stage, at which decentration
f focus occurs. That is the point where the cognitive ability to reason about abstractions and
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:9

a

t

T

s

s

t

a

p

d

a

r

e

a

h

t

4

T

d

n

w

t

a

t

e

c

e

4

T

F

E

a

y

d

d

h

t

t

S

e

a

a

m

r
dapt skills to tasks that are closely related is formed. Clear et al. have published a report on
he BRACElet project that has contributed key findings on how novices learn to program [16].
hey also provide guidelines for programming problems for novices. Cunningham et al. provide
upport for sketching program traces on paper for code reading that correlates with greater
uccess on code reading problems that involve loops, arrays, and conditionals [18]. They used
his concept of sketching on new task types such as code writing, code ordering, and code fixing
nd found that different types of sketching were used for these tasks, not always with increased
erformance.
Not related directly to program comprehension, but generally to CS education, Nelson and Ko

iscuss that although theory can be helpful in interpreting designs and results, sometimes it can
lso inhibit progress [45]. We need to pay special attention to this observation, especially with
espect to eye-tracking studies, because we have just scratched the surface when it comes to using
ye tracking as a means to learn how students and experts work. There are not many studies that
re conducted using eye tracking where one can do a meta analysis to come up with a theory on
ow students work. We may develop a working theory on how eye movements occur in different
asks, but we still need more empirical evidence to validate such behaviors.

 METHOD

he objective of this study is to assess how a student programmer approaches understanding two
ifferent programming languages: C++ and Python, in two different task types: bug fixing and
ew feature addition. Each student saw both C++ and Python code for the tasks. Eye movements
ere recorded during the entire study to objectively determine what students were looking at as

hey performed the tasks. The tasks themselves are not directly comparable, as we wanted to avoid
ny learning effects; however, they do use similar, semantic constructs as shown in Section 4.3 . In
his section, we present the participant demographics, sampling procedures, tasks, stimuli in the
xperimental design, eye-tracking hardware used, the terminology used, and the tools we used to
ollect measures to answer our research questions. We followed the practical guide on conducting
ye-tracking experiments while designing the experiment [61].

.1 Participant Characteristics

he participants were mainly students from a large Midwestern university in the United States.
ourteen volunteers participated in the study.

Table 1 shows a summary of the demographic information collected from the participants.
leven participants were male and three of them were female. Eight participants were between 18
nd 24 years old, two participants were between 25 and 34 years old, one was between 34 and 44
ears, and three were over 45 years old. There were six undergraduate students, four graduate stu-
ents, and four non-students (who had just graduated) among the participants. Nine participants
id not have any industry employment and experience, and five participants indicated that they
ad industry experience. Netbeans was the most used IDE among the participants, with six par-
icipants choosing it as one of the IDEs they use for programming. Eclipse and Visual Studio were
he next popular choices, appearing in the participants’ answers five and four times, respectively.

We asked the participants to self-report their programming skills and experience levels.
iegmund et al. [68] state that self estimation is a reliable measurement of programming skills and
xperience. Eight participants rated their design skills as average, five rated them as above aver-
ge/good, and one rated them as excellent. Six participants rated their programming skills as aver-
ge, six rated them as above average/good, and two rated their skills as excellent. As for program-
ing language specific questions, five participants ranked their C++ skills as beginner level, five

anked their skills as intermediate, one ranked their skills as average, and finally, three participants
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:10 N. Mansoor et al.

Table 1. Participant Demographic Information

Demographic Categories Choices n

†

Gender Male 11

Female 3

Age 18–24 8

25–34 2

34–44 1

>45 3

Student Level Not a student 4

Undergraduate 6

Graduate 4

Industry Employment No 9

Yes 5

IDE ‡ Netbeans 6

Eclipse 5

Visual Studio 4

Design Skills Average 8

Above Average/Good 5

Excellent 1

Programming Skills Average 6

Above Average/Good 6

Excellent 2

Demographic Categories Choices n

†

C++ Skills Beginner 5

Intermediate 5

Average 1

Advanced 3

Years of Programming Between 1 and 2 5

in C++ Between 3 and 5 3

Between 6 and 10 3

More than 10 2

None 1

Python Skills I don’t know Python 5

Beginner 1

Intermediate 5

Advanced 3

Years of programming None 5

in Python Between 1 and 2 5

Between 3 and 5 3

Between 6 and 10 1

Programming Languages ‡ Java 9

C++ 9

C 8

Python 5

† Number of participants who chose the corresponding option in the row.
‡ Picking multiple answers was allowed.

r

p

b

a

a

r

s

h

e

w

t

4

T

l

p

a

v

a

e

c

I

A

anked their skills as advanced. Five participants had between 1 and 2 years of experience in C++
rogramming, three participants had between 3 and 5 years of experience, three participants had
etween 6 and 10 years of experience, two participants had more than 10 years of experience,
nd finally, one participant had no experience in C++ programming. Subsequent questions were
bout the participants’ skills in Python. Five participants said that they did not know Python. One
anked their skills as beginner level, five ranked their skills as intermediate, and three ranked their
kills as advanced. Five participants had no experience in Python programming, five participants
ad between 1 and 2 years of experience, three participants had between 3 and 5 years of
xperience, and one participant had between 6 and 10 years of experience. Finally, the participants
ere asked to list the languages they could program in. Java was mentioned in the answers nine

imes, with C++, C and Python coming as the next most mentioned answers, respectively.

.2 Sampling Procedures

he students were recruited from a class that taught Python as an introductory programming
anguage. All of the students were also knowledgeable in C++. There were no incentives for their
articipation. They were all in the CS program. None of them were students of the authors. The
uthors did not know any of the students personally. All participation was voluntary and done
ia an announcement. The study took place in a quiet eye-tracking lab where only the moderator
nd the participant were present without any outside distractions. The moderator was there to
nsure the participant was seated at the correct distance from the eye tracker and to perform the
alibration. They did not interact with the participants during the experiment. The University’s
nstitutional Review Board approved the study prior to its implementation.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:11

Table 2. List of Tasks/Stimuli Used in the Study

Stimulus Language Type LOC

Character
Count

Description Constructs Present

Stimulus 1 Python

Bug
Fixing

9 238
Creates the
Palindrome of a
string

Input/Output Built-in

String Functions (join,
reverse, . . .)
Conditionals

Stimulus 2 C++

Bug
Fixing

26 431
Creates the
reverse of a word
or a phrase

Input/Output Pointers
While loops Arrays

Conditionals

Stimulus 3 Python

Feature
Addition

46 1052

Prints the
position of a
number in an

array, or that it
was not found

Input/Output While
Loops Conditionals

Class/Functions

Stimulus 4 C++

Feature
Addition

31 546
A class defining a
Stack and all its
related functions

Input/Output Arrays
For Loops

Conditionals
Class/Functions

4

T

a

t

p

a

t

t

p

t

p

c

i

n

s

s

b

a

s

h

b

c

i

d

2

.3 Conditions and Design

he four different combinations of programming language and task types used in this experiment
re listed in Table 2 . A high level description of the programs and the programming constructs
hat are present in the program are also listed. Two tasks were presented in Python, and two were
resented in C++. From each language category, one task was a bug fixing task, and the other was
 feature addition task.

For the bug fixing tasks, we asked the participants to find the bug located in the program, write
he line number they thought contained the bug, and attempt to fix the bug. They were also given
he expected input and output of the program. For the feature addition tasks, we gave the partici-
ants a description of the program’s current capabilities and a description of an additional feature
hat they had to implement. Figure 1 shows Stimulus 1 and Stimulus 4. A complete replication
ackage with all the tasks, programs, and eye movement data is available at Reference [40].
Participants were given all four tasks in randomly generated order. They had access to the source

ode in Geany, 2 the console output of the program, and the requirements of the task. Requirements
ncluded the expected input and output for the bug fixing tasks and the additional feature that
eeded to be implemented for the feature addition tasks. Figure 2 shows an image of the screen
etup and these three areas. There was a trial task given to familiarize participants with the IDE
etup so they could ask questions. We did not collect eye-tracking data for the trial task.

We now provide some rationale for why we chose these two types of tasks (new feature and
ug fix). As developers, we perform a variety of tasks on a daily basis, such as bug fixing, feature
ddition, refactoring, code review, testing, reading requirements, reading to comprehend code,
ummarizing code, and many more. Almost all of the eye-tracking studies in program compre-
ension are on tasks that involve participants summarizing Java code, and very few are on fixing
ugs. There are none on adding new features. Moreover, all studies (except for a few) are on short
ode snippets and all on Java. Besides Turner et al. [75] there are no published studies looking
nto eye movements on Python that we are aware of. It has been shown by Abid et al. that results
erived from short code snippets are not always consistent with when you use realistic programs
 Geany IDE: https://w w w.geany.org/

ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://www.geany.org/

2:12 N. Mansoor et al.

Fig. 1. Python Bug fixing task and the C++ feature addition task used in the study.

w

d

a

t

s

t

i

a

d

s

o

f

A

ithin an IDE to test developers [2]. To bridge this gap, we chose two of the activities we believe
evelopers spend a lot of time on, i.e., fixing bugs, and adding new features. In the future, we will
dd more task categories as provided by Murphy et al. [44].

The goal of this article was to see how participants fare on different types of tasks. The tasks
hemselves are different categories and should not be considered comparable. The goal was to
ee how the same individual’s eye movements differed between the different types of tasks. The
wo tasks chosen are representative of what software developers typically do, i.e., fix bugs and
mplement new features, as also evidenced by many issue tracker systems in open source projects.

Our underlying assumption (based on theoretical frameworks such as Reference [18] that looked
t different tasks albeit without eye tracking) is that bug fixing and new feature tasks would require
ifferent levels of comprehension and problem solving skills. For bug fixes, developers generally
tart with the bug report and/or expected input/output and try to figure out which line the bug is
n by tracing backward to find the line via stack traces or some other tracing method. With new
eature tasks, developers do not do as much tracing, since they are implementing forward based
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:13

Fig. 2. Three top-level AOIs: Source , Requirements , Console Output .

o

w

r

t

t

l

w

t

t

n

C

i

w

m

f

H

“

t

e
a

a

4

W

r

n the requirements they read and what the expected feature should do. Because of these reasons,
e believe that solving these tasks would generate different user behaviors.
For the bug fixing tasks, the requirements of the task were somewhat comparable. One task

everses a word or phrase (C++) and the other creates a palindrome (Python). The new feature
asks, however, were slightly different, albeit they used similar constructs listed in Table 2 . Since
he study design is within subjects, giving very similar programs across languages would cause
earning effects that we wanted to avoid. Since we recruited our participants from a Python class,
e also wanted to make sure we chose stimuli with concepts already taught in the class. We asked

he instructor for their syllabus and weekly schedule to ensure we used programs and concepts
hat was known to the students. We did not use verbatim any code from the class itself. We were
ot instructors for the course.
Note that the goal of this article was not to do a side by side comparison of the same task in

++ versus Python. Instead, it was to see how each participant understood C++ versus Python
n two task categories. To account for the difference in lines of code in the tasks, we make sure
e normalize our fixations per character, because otherwise, longer programs will always have
ore fixations as there is more to read (see Section 4.6 for more details on normalization). For

uture work, we plan to evaluate different program complexities [3 , 21] within each task category.
owever, task complexity was not the scope of this article.
After each task, we asked the participants to rate the difficulty of the tasks, with the options:

Easy,” “Average,” and “Difficult.” For the statistical analysis, we assigned the numbers 1, 2, and 3
o these choices, respectively. We also asked the participants to rate their confidence level about
ach task, with the options “Not Confident,” “Somewhat Not Confident,” “Somewhat Confident,”
nd “Very Confident.” For the statistical analysis, we mapped these choices to the numbers 1, 2, 3,
nd 4, respectively.

.4 Terminology

e provide definitions for basic terminology we use throughout the article to help provide the
eader with context for our study.
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:14 N. Mansoor et al.

w

e

a

t

o

o

c

t

t

n

t

b

t

m

r

c

F

r

a

t

q

4

W

t

r

e

t

n

r

s

d

e

c

s

A

Program comprehension is a sub-field of software engineering/computer education that deals
ith a user building a mental representation (albeit subjective) of the code while solving a task.
Task Type refers to the various possible types of tasks a developer (in this case, a student) may

ngage in. Possibilities could be bug fixing, new feature addition, refactoring, code review, testing,
nd so on. In this article, we only evaluate two task types (bug fix and new feature addition).

Task refers to the actual set of artifacts that falls into the specific task category. For a bug fix
ask, this would be the code in the IDE, the program requirements, and expected input and output
f the program. For the new feature task it would be the starter code in the IDE, current description
f the program, and a description of the additional feature to be implemented. In both cases, the
onsole output was also available to the participant. The participant is expected to engage with
hese artifacts to produce a result. In the case of the bug fixing task, the result would be the line
hat had the bug and a fix for the bug. For the new feature addition tasks, the result would be the
ewly written code that implements the new feature.
Bug localization (in our study) refers to the time when the participants read the line containing

he bug, prior to any edits made, but do not fix the bug.
Stimuli is eye-tracking terminology and simply means anything that is tracked on the screen

y the eye tracker. In our case, the Geany IDE was the main stimulus that contained within it all
he artifacts that the participant saw.

Chunks refer to a line or set of contiguous lines of code with a specific logical and semantic
eaning. We also refer to them as beacons [6 , 80].
Areas of Interest (AOI) refer to parts of the stimulus on which eye-tracking metrics are

ecorded. Examples could be chunks in the code editor, the requirements area of the IDE, or the
onsole output. The AOI is usually defined by the researcher.

Fixation is the stabilization of the eyes on an object of interest for a certain period of time.
ixations are made up of multiple raw gazes and have a duration associated with them, which we
efer to as the fixation duration. Most processing happens during fixations, which is why they are
 standard measure in most eye-tracking studies.

Scanpath refers to the directed path formed by saccades between fixations. It determines how
he eye navigates across the stimuli.

Reading behavior refers to the percentages of fixations that appear on the various AOIs in
uestion.
Navigation behavior refers to the scanpath on source code over time.
Editing refers to the act of modifying the code to fix a bug or implement a new feature.

.5 Procedure

e present the study procedure, including experimental setup, eye-tracking hardware, and discuss
he steps for pre-processing the eye-tracking data to produce fixations on parts of the stimuli.

4.5.1 Experimental Setup—Study Environment. The experimental suite Tobii Studio was used to
ecord all the eye-tracking data. We set up Tobii Studio to record the computer’s desktop so ev-
rything that appeared on the desktop during the study was recorded. This way, when we opened
he Geany IDE, all eye-tracking data was collected on the Geany IDE. The stimuli given were
ot images. Rather, the entire screen was a stimulus. Thus, anything looked at on the screen was
ecorded. Note that Tobii Studio is limited in processing eye movements with scrolling and context
witching on desktop stimuli. To overcome this limitation, we did a manual post processing step to
etect scrolling and appropriately used keyframing available in Tobii Studio to detect the correct
lement that was looked at in the presence of scrolling. This was a manual time-consuming pro-
ess. An example of how the desktop looked like is shown in Figure 2 . The left part of the image
hows the Geany IDE containing the source code. The top right part of the image shows a text
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:15

d

i

r

0

T

A

a

fi

a

a

i

p

fi

t

c

a

s

c

a

p

m

p

N

k

a

f

c

c

s

r

(

d

a

c

p

n

i

c

w

a

t

I
ocument containing the requirements, input, and expected output. The bottom right part of the
mage shows the console output.

4.5.2 Eye-tracking Apparatus. The Tobii X60 eye tracker was used for the data collection and
ecording gaze data. It is a remote eye tracker with a 60 Hz sample rate and an accuracy of
.5 degrees. A nine point calibration was used prior to starting the study for each participant.
he monitor used was a 24-inch LCD monitor at a 1,280*1,024 resolution.
The IV-T fixation filter [5] was run on the raw gazes and exported out of Tobii Studio for analysis.

n interpolation to fill in missing gazes of up to 75 ms was used. A velocity window of 20 ms and
 velocity threshold of 30 degrees per second were used to calculate the initial fixations. Adjacent
xations separated by less than 75 ms and 0.5 degrees are merged and fixations less than 60 ms
re discarded.

4.5.3 Areas of Interest (AOI). To make sense of the eye-tracking data, one first needs to define
n area of interest (AOI) it falls under. Areas of interest are typically parts of the stimuli one is
nterested in observing. AOIs are created in the form of rectangles over the screen recording of
articipants completing the tasks. Tobii Studio was used to create these AOIs and map participant’s
xations to the correct AOI. Two levels of AOIs were used. The top level category of AOIs is the
hree different sections shown in Figure 2 . The three AOIs represent Source (the window that
ontains the source code), Requirements (the window that contains the requirements for the task),
nd Console Output (the output window used when running the program).

In addition to the top level AOIs listed above, there were some additional AOIs based on the
ource code. These AOIs are mostly defined as a single line of code. However, several AOIs that
ontain multiple lines of related code in a single chunk (also referred to as a beacon). As these
re related to the code, these AOIs will differ between each stimulus. In addition, several of our
rograms required scrolling to view the entire program. To ensure that fixations were correctly
apped to the right AOI even when scrolling occurred, the AOIs were manually mapped in a post

rocessing step onto the lines of code during scrolling so the fixation mapping would be correct.
ote that the eye tracker is not aware that the items on the screen moved during a scroll (all it
eeps track of is the x,y coordinate in pixels on the screen that the user is looking at) and does not
utomatically map gaze to the moved line, which is why we did this manually. The keyframing
eature in Tobii Studio was used to keep track of where on the screen the scroll happened and the
orresponding AOI was moved accordingly so the gaze context is maintained. This process is not
ompletely automatic and took considerable time for all four tasks for each participant. Another
tudent thoroughly spot checked the post processing keyframing to ensure they were done cor-
ectly. In addition, each line visible in the Geany IDE was mapped in a manual post processing step
after the keyframing was done) via our custom scripts. This was the best option to get line-level
ata from the editor.
Once a participant made an edit to the source code, we stopped mapping the source code AOIs

s what the participants would be looking at in the AOIs may not correspond to the original source
ode. The new feature tasks involve a lot of editing. This means adding/removing code at different
oints in time as the task progresses. Tracking what a developer looks at while editing code is
ot a trivial problem. Currently, the state of the art does not support tracking gaze while editing

n a clean manner to accurately tell what the person is looking at as the code is constantly being
hanged. This is simply because of how eye trackers work. Most studies done even in psychology,
here eye tracking is very prevalent, only focus on static images and videos with large areas that

re relatively unchanged. Because of this limitation, we chose not to report fixations on partial
okens of code (as they are written). We do not believe this data would be useful for interpretation.
nstead, we report on the lines added and time to first edit, which we believe is a better metric for
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:16 N. Mansoor et al.

Table 3. Measures Used for Each of the Research Questions

Research Question Metric Definition

RQ1, RQ2 Accuracy Accuracy of a task

RQ1, RQ2 Time The time participants took to complete a task

RQ1, RQ2 Total Fixation Count The total amount of fixations for a given task

RQ1,

RQ2

Total Fixation Count The fixation count adjusted for the total

Per Character characters of code in the stimulus

RQ1, RQ2 {AOI} Fixation Count The total fixation count for the specified AOI

RQ1, RQ2 Total Fixation Duration The sum of fixation durations for a given task

RQ1,

RQ2

Total Fixation Duration The fixation duration adjusted for the

Per Character total characters of code in the stimulus

RQ1, RQ2 {AOI} Fixation Duration The total fixation duration for the specified AOI

RQ1, RQ2 Average Fixation
Duration

The average fixation duration for a given task

RQ3 {AOI} Fixation The {AOI} fixation duration as a percentage of the

Duration Percentage total fixation duration on the stimulus before edits

RQ3 Alpscarf Plots Visualizes gaze transitions on specified AOI across time

before edits

RQ4 Time Till First Edit The amount of time until a participant begins to edit

the source code

RQ4 Time Till First Edit

Percentage

The amount of time until a participant begins to

edit the source code in percentage of total time

RQ4 Lines Added The amount of additional lines added to the

source code during a feature addition task

t

i

w

m

o

R

4

T

o

D

d

s

m

s

e

t

a

m

a

f

r

A

he new feature addition task. We are aware of only one community eye-tracking infrastructure
Trace [23] that supports editing via an Atom extension [22] but even that is limited. This study
as not done using iTrace or Atom. For this reason, we opted for the more traditional editing
easures when looking at behaviors while performing the new feature tasks. We report on details

n overall fixation count and durations for the new feature tasks without the editing involved in
Q1 (differences in programming language) and RQ2 (differences in task type).

.6 Measures

he measures used in this experiment are based on best practices guidelines reported in the field
f program comprehension, software engineering, and eye tracking [61]. We direct the reader to
uchowski et al. [20] for a detailed theoretical description of all eye-tracking measures. Table 3
escribes the metrics used to compare participants’ behavior while working on the four tasks. We
pecify the research questions, the metrics used to answer the questions, and the definition of the
etrics. We chose metrics based on fixations, a group of metrics used in eye-tracking studies in

oftware engineering [60 , 61] that are used to measure visual effort. In prior studies, areas of inter-
st with higher fixation count and duration are believed to have attracted more visual attention or
hat understanding them required more effort [61 , 63 , 64]. We calculated the total fixation count
nd duration over the given tasks, per character and specific AOIs. Furthermore, we calculated the
ean fixation duration during each specific task as well. The fixation count and duration serve

s a measure of visual effort when it comes to solving the different types of tasks (bug fixing and
eature addition) and comparing the different programming languages (Python and C++) in our
esearch questions.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:17

t

T

f

a

b

n

fi

h

5

I

o

r

a

m

a

3

5

G

c

t

m

t

c

c

s

“

t

1

p

t

t

t

a

t

t

t

p

C

A

w

a
Next, we explain why we use the fixation count per character as a metric. To compare eye-
racking data across the different programming languages, we first need to normalize the data.
he programming languages C++ and Python have very different semantic structures and dif-

erent lines of code. There might not be a direct equivalent construct between the languages. To
ccount for the difference in lines of code in the tasks, we make sure we normalize our fixations,
ecause indeed longer programs will have more fixations. We account for this in our analysis by
ormalizing by character. To do this, we divide eye movement duration over a token. So if the total
xation duration is 400 ms on a token of four characters, the normalized total time is 100 ms . This
as been done in prior work as well by Madi et al. [38] and Abid et al. [2].

 EXPERIMENTAL RESULTS

n this section, we first present the participants’ confidence levels for each task, and then present
ur findings for each research question. The accuracy of the bug fixing tasks was graded as cor-
ect/incorrect, by determining whether the participants found and fixed the bug correctly. The
ccuracy of the new feature tasks was based on whether or not the feature was correctly imple-
ented. The time on task was measured via the eye-tracking software by determining the start

nd end time markers in the eye-tracking data for each task. On average, the participants spent
7.3 (± 19.8) min working on all tasks.

.1 Confidence Levels

iven that some of our participants stated that they did not know Python, we looked at their
onfidence levels in their answers and understanding of each task. This information showed us
hat even though these participants did not consider themselves knowledgeable in Python, they
ostly had a good understanding of the tasks, and we believe that due to this fact, we can include

hem in the analysis for answering the research questions. The following is the description of
onfidence levels for each task. Since all the participants were recruited from the same Python
ourse, they were all learning Python. We asked the students to “Rate your Python programming
kills” and they had the following choices: “I don’t know Python,” “Beginner,” “Intermediate,” and
Advanced.” We also asked them to “Select years of experience in programming with Python,” and
he choices were: “None,” “Between 1 and 2,” “Between 3 and 5,” “Between 6 and 10,” “More than
0.” We believe some of the students misunderstood these questions as asking about experiences
rior to taking the course.

5.1.1 Bug fixing Task in Python. The participants generally had high confidence levels about
heir answers for this task. Eleven participants were very confident about their answers, including
hree who stated that they did not know Python. Two participants were somewhat confident about
heir answers. Only one participant, one who did not know Python, was not confident in their
nswer. The participants who stated they were very confident or somewhat confident about the
ask answered correctly. In contrast, the only participant who answered the task incorrectly was
he one who was not confident in their answer.

5.1.2 Bug fixing Task in C++. The participants were mainly very confident about their answers
o the bug fixing task in C++. All the participants stated that they knew C++. Of the 14 partici-
ants, nine were Very Confident about their answers to this task. One participant was Somewhat
onfident in their answer, whereas one participant was Somewhat Not Confident in their answer.
nd finally, three participants were Not Confident in their answers. Additionally, every participant
ith high confidence in their answer and understanding of the task answered correctly.

5.1.3 Feature Addition Task in Python. The participants were mainly confident about this task
s well. Two participants, who stated that they did not know Python, did not try to solve this task
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:18 N. Mansoor et al.

a

c

c

w

a

t

P

n

p

I

i

fi

i

t

c

s

g

o

a

c

l

c

t

e

t

t

w

n

p

d

a

5

R

t

t

w

A

e

A

nd had no answer to the confidence level question. Nine participants stated that they were very
onfident about their answers. Two of these participants did not know Python, but they were very
onfident in their answers to the task. One person was somewhat confident about their answer,
hile two people, one of whom did not know Python, were somewhat not confident about their

nswer. And finally, one person who stated that they did not know Python was not confident about
heir answer. The results show that out of the five participants who said that they did not know
ython, three tried to solve the task. Two of them were very confident, and one was somewhat
ot confident. The confidence level and the score did not show a clear relationship. All seven
articipants who felt they answered the task correctly were very confident about their answers.
n contrast, the participants who did not answer the task correctly had varying confidence levels
n their answers.

5.1.4 Feature Addition Task in C++. Finally, we observed that the participants were mostly con-
dent about the feature addition in C++ task. Three participants said that they were not confident

n their answers. None of these three participants added any lines to the program. Two of these
hree participants did not try the Python feature addition task either. Eight participants were very
onfident in their answers, and three were somewhat confident. The participants who were either
omewhat or very confident answered the task correctly, and the other three participants did not
et a score, because they did not try solving the task.

5.1.5 Obser vations. Our obser vations from the Python bug fixing task indicate that only one
f the participants who claimed that they did not know Python was not confident about their
nswer and understanding of the program, and that person did not answer the task correctly. In
ontrast, the other four participants who claimed no Python knowledge stated that they had high
evels of confidence about their understanding and answer to this task, and they answered the task
orrectly. Interestingly, we had more participants who did not feel confident about the bug fixing
ask in C++, even though all participants had stated that they knew the C++ language and had
xperience with it.

Furthermore, the confidence level of the feature addition tasks shows that three out of four par-
icipants who were not confident (either not confident or somewhat not confident) in the Python
ask were also not confident in the C++ task. This can imply that these participants had trouble
ith the feature addition tasks in general, and their claimed lack of knowledge in Python might
ot have been the most critical issue.
Based on these observations, we believe that it is more beneficial to keep the study data from the

articipants who claimed that they did not have experience with Python, as their lack of experience
id not affect their performance in Python tasks drastically. In addition, they were recruited from
 class that taught Python.

.2 RQ1: Reading Differences between C++ and Python Tasks

esearch question 1 asks about the reading and navigation differences between C++ and Python
asks. The null and alternate hypotheses for this question are as follows.
LD 0 : The programming language used for the tasks does not affect the visual effort of the par-

icipants working on those tasks.
LD A

: The programming language used for the tasks affects the visual effort of the participants
orking on those tasks.
To test our hypothesis, we calculated accuracy, time, overall fixation count and duration, and

OI fixation count and duration for the tasks. Note that we use fixation metrics as a proxy for visual
ffort as stated in Section 4.6 . We then compared these metrics in different languages. Table 4
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:19

Table 4. Language-based Differences

Metric AOI Python C++ p-value

‡ Effect

(for eye-tracking metrics) Tasks Tasks Size

‡

Time (s) † N/A 543.7 628.4 0.8302 0.0333

Accuracy (%) † N/A 71.43 71.43 — —
Total Fixation Overall (normalized per character) 2.52 2.44 0.8665 0.0178
Count Source Code 955.21 859.82 0.7793 0.0255

Requirement 170.93 185.32 0.2104 0.0484
Output Console 170.39 90.82 0 . 0476 ∗ 0.2997

Total Fixation Overall (normalized per character) 0.612 0.570 0.9019 0.0280
Duration (s) Source Code 212.00 206.91 0.7793 0.0051

Requirement 38.63 39.63 0.6295 0.0230
Output Console 34.08 19.08 0 . 0402 ∗ 0.3023

Average
Fixation Overall 0.219 0.217 0.7282 0.0102
Duration (s)

† Time and Accuracy are not eye-tracking metrics, and AOI is not applicable.
‡ p-values are calculated by the Mann-Whitney test, and Effect Size is Cliff’s Delta.

* p < 0 .05 .

s

b

c

t

t

a

6

7

f

e

w

t

t

p

f

h

t

u

c

m

r

l

s

l

ummarizes the metrics for this research question and shows the statistical tests for language-
ased differences in reading and code navigation.

5.2.1 Accuracy and Time. The first metrics we investigate are the time participants took to
omplete a task and the accuracy of the task. These two metrics together can provide insight into
he difficulty of the tasks based on the programming language. Overall, we found that a single
ask took 586.1 s on average to complete, and there was an overall task accuracy of 73.33%. We
lso found that tasks written in Python took 543.7 s to complete, while tasks written in C++ took
28.4 s to complete. We also found that both Python and C++ tasks had an overall accuracy of
1.43%. Figure 3 is the bar chart showing the percentage of accurate answers from the participants
or tasks from each language, and Figure 4 is the boxplot showing the total time taken to complete
ach type of task among the participants. The outliers are removed by Python’s plotting function,
hich uses the Interquartile Range Rule to detect outliers.

5.2.2 Fixation Count. Next, we investigate the number of fixations from participants during
he tasks. Overall, participants had 1,255.07 fixations across all tasks, including all fixations on
he Source Code , the Requirements , and the Output Console . However, to see the effect of
rogramming languages on this metric, we must compare the programming languages. First, we
ound that tasks written in Python had, on average, 1,346.64 fixations, while tasks written in C++
ad, on average, 1,163.50 fixations. Source code length can play a role in fixation count. The longer
he source code (or any type of written text) is the more fixations are required to read through and
nderstand it, so it is important to control for fixation count as a function of the total character
ount of code in the stimulus. We show the total fixation count normalized by character count
etric in Table 4 , as well as Mann-Whitney tests comparing the metric overall. The table also

eports the overall and AOI specific number of Total Fixation Count and Mann-Whitney U tests,
ooking at the differences between the metrics across different programming languages. We found
ignificant differences in the Total Fixation Count on the Output Console AOI between the two
anguages (Mann-Whitney U p = 0 . 0476 , small Cliff’s Delta (d = 0 . 2997)).
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:20 N. Mansoor et al.

Fig. 3. Accuracy of tasks by stimulus.

Fig. 4. Time to complete tasks by stimulus (outliers removed for scale).

o

t

m

h

d

d

T

o

s

a

A

5.2.3 Fixation Duration. Next, we look at the Total Fixation Duration in seconds overall and
ver the different AOIs. Looking at the total fixation duration during the tasks, we can see that
he overall fixation duration for a task is, on average, 288.29 s. However, as with the fixation count
etric, we must compare programming languages. First, we found that tasks written in Python

ad a total fixation duration of 304.7 s on average, while tasks written in C++ had a total fixation
uration of 271.9 s. We report the normalized per character total fixation duration, the total fixation
uration over different AOIs, and Mann-Whitney U test results comparing the two languages in
able 4 . The tables show that there are significant differences between the total fixation duration
n the Output Console between the tasks in different languages (Mann-Whitney U p = 0 . 0402 ,
mall Cliff’s Delta (d = 0 . 3023)). Finally, we did not see any significant differences between the
verage fixation duration throughout the tasks in different languages.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:21

Table 5. Task-based Differences

Metric AOI Bug Feature p-value ‡ Effect Size ‡

(for eye-tracking metrics) Fixing Addition

Time (s) † N/A 474.1 690.8 0 .0286 ∗ 0.3304

Accuracy (%) † N/A 79.31 67.74 0.3200 0.1157

Total Fixation Overall (normalized per character) 3.05 1.91 0 .0298 ∗ 0.306

Count

Source Code 748.5 1066.54 0.0635 0.2385

Requirement 130.42 225.82 < 0 .001 ∗ 0.471

Console Output 98.96 162.25 0.1299 0.1632

Total Fixation Overall (normalized per character) 0.757 0.452 0 .0098 ∗ 0.306

Duration (s)

Source Code 185.8 330.9 0.1315 0.1403

Requirement 30.69 47.63 0 .0009 ∗ 0.355

Console Output 22.67 30.77 0.2741 0.0663

Average Fixation
Overall 0.227 0.209 0 .0002 ∗ 0.1939

Duration (s)

† Time and Accuracy are not eye-tracking metrics, and AOI is not applicable.
‡ p-values are calculated by the Mann-Whitney test, and the Effect Size is Cliff’s Delta.

* p < 0 .05 .

O

o

5

W

t

w

c

t

n

t

t

w

fi

1

A

d

m

b

s

W

RQ1 Finding: The results show that the participants fixated more and longer on the Console
utput AOI while working on Python tasks, and the difference is statistically significant. Based
n the results, we can reject the null hypothesis LD 0 .

.3 RQ2: Reading Differences between Bug fixing and Feature Addition Tasks

e present the null and alternate hypotheses for the research question on task type differences.
T D 0 : The task type (bug fixing vs feature addition) does not affect the visual effort of the par-

icipants working on those tasks.
T D A

: The task type (bug fixing vs feature addition) affects the visual effort of the participants
orking on those tasks.
Once again, we calculated accuracy, time, overall fixation count and duration, and AOI fixation

ount and duration for the tasks for testing our hypothesis. Table 5 summarizes the metrics for
his research question and shows the statistical tests for task-based differences in reading and code
avigation.

5.3.1 Accuracy and Time. We found that, on average, bug fixing tasks took significantly less
ime to complete. We report the accuracy and time in Table 5 . The Mann-Whitney U test shows that
he difference in the time working on the two types of tasks is statistically significant (p = 0 . 0286)
ith a medium effect size according to its Cliff’s Delta (d = 0 . 3304).

5.3.2 Fixation Count. We investigate the effect of task type on fixation count. We found that bug
xing tasks, on average, had 1,005.79 fixations, whereas the feature addition tasks had, on average,
,504.36 fixations throughout the task. We could not find a statistical significance in the differences.
fter normalizing these fixation count with the character count of the stimuli, we found significant
ifferences between the two task types after running a Mann-Whitney test (p = 0 . 0298) with a
edium effect size according to its Cliff’s Delta (d = 0 . 306). We looked at the Total Fixation Count

etween the different AOIs in different types of tasks, shown in Table 5 . We found that the only
ignificant difference in fixation count is between the fixations on the Requirement AOI (Mann-

hitney U p < 0 . 001 , medium Cliff’s Delta (d = 0 . 471)).
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:22 N. Mansoor et al.

f

i

o

t

W

a

c

r

I

e

(

D

T

f

h

t

A

t

5

N

l

b

e

i

a

b

t

A

e

b

o

A

p

(

t

c

a

u

o

s

d

A

We can see that while feature addition tasks had significantly more fixations, after controlling
or the stimulus length, these tasks had significantly fewer fixations than bug fixing tasks. This
ndicates that although participants did not spend as much time and had fewer overall fixations
n the bug fixing tasks, the bug fixing tasks were read more thoroughly than the feature addition
asks.

5.3.3 Fixation Duration. We also report on the effect of task type on fixation duration in Table 5 .
e found that bug fixing tasks, on average, had a total fixation duration of 245.7 s, while feature

ddition tasks had, on average, a total fixation duration of 330.9 s. We report the normalized per
haracter fixation duration in Table 5 , and we see that there is a significant difference in the met-
ic between the two types of tasks (Mann-Whitney U p = 0 . 0098 , small Cliff’s Delta (d = 0 . 306)).
nvestigating the Total Fixation Duration over the different AOIs, we only saw a significant differ-
nce in the metric on the Requirement AOI (Mann-Whitney U p = 0 . 0009 , medium Cliff’s Delta
 d = 0 . 355)). Finally, results show that there is a significant difference between the Average Fixation
uration in the two types of tasks (Mann Whitney U p = 0 . 0002 , small Cliff’s Delta (d = 0 . 1939)).
RQ2 Finding: Overall, the results show significant differences in the Total Fixation Count and

otal Fixation Duration overall (normalized per character), indicating that participants had more
requent and longer normalized fixations overall in the bug fixing tasks. Furthermore, participants
ad significantly longer and more frequent fixations on the Requirement AOI in the feature addi-
ion tasks. There was also a significant difference between the Average Fixation Duration over all
OIs. These differences give us enough evidence to reject the null hypothesis (T D 0), showing that

he different types of tasks affect the reading and navigation patterns.

.4 RQ3: Problem Solving Behavior in Bug fixing Tasks

ext, we turn our analysis to the two bug fixing tasks. To address the third research question, we
ook at the scan patterns (scan paths) of the participants and the distribution of fixations on the
uggy lines. This research question is exploratory in nature and does not have a formal hypoth-
sis. Since we stop mapping gazes to lines when we detect edits (refer to Section 4.5.3 for more
nformation), we report eye gaze distributions in this section until the first edit. We refer to this
s the bug localization phase. Note that there were a lot fewer edits in the bug fix task, since most
ugs were limited to 1 line and required minor changes.

5.4.1 Visualization of Scan Patterns. To visualize the scan patterns of the participants while
hey were working on the bug fixing tasks, we used the augmented scarf plots generated by the
lpscarf [81] web application. Note that this visualization is similar but more rich in how it conveys

ye transitions between the different lines and chunks of code compared to the scan patterns shown
y Uwano et al. [77] and Sharif et al. [63]

Scarf plots are used in eye-tracking research to visualize gaze transitions among areas of interest
ver time. They become less effective when there are a higher number of AOIs in a study, and
lpscarf presents a way to visualize the transitions and includes order conformity and revisits. We
lotted the fixations on the different lines of the bug fixing tasks’ source code (or groups of lines
chunks), as specified in Tables 8 and 6) over the entire duration of working on the task until finding
he bug and before the first edit. The application gives us multiple options for visualization, and we
hose the Duration-focus and Normalized plot. In the duration-focused plots, as seen in Figures 5
nd 6 , the width of each bar specifying a fixation is proportionate to the fixation duration. By
sing this option, we can see both the transitions the reading order, and the relative time spent
n specific lines. We also chose the normalized view, which results in all the scarf plots being the
ame width despite the various number of transitions or the different fixation times and overall
uration of the task. We chose this option for the better visibility of the data, as some participants
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:23

Table 6. Overall Source Code AOI Distribution Versus Windowed Source Code AOI Distribution For

Stimulus 2 (C++)

Line Code Overall Windowed

duration duration

Main

#include < iostream >

7.98% 9.40%

#include < string.h >

#define MAX_SIZE 256

using namespace std;

int main()

Cout

char word[MAX_SIZE];

9.84% 8.45%

cout << ‘‘Please enter a phrase to be translated:’’;

cin.get(word, MAX_SIZE);

IfCond if(strlen(word) > 0) 6.58% 7.26%

IfLine1 char* first = & word[0]; 6.26% 16.17%

IfLine2 * char* last = & word[strlen(word)]; 8.37% 22.83%

WhileCond while(first < last) 15.33% 21.91%

WhileLine1 char tmp = *first; 8.36% 7.68%

WhileLine2 *first = *last; 8.64% 7.93%

WhileLine3 *last = tmp; 10.85% 8.33%

WhileLine4 ++first; 6.88% 3.99%

WhileLine5 --last; 6.14% 3.75%

Output — 7.00% 2.74%

*indicating where the bug is located.

Fig. 5. Alpscarf showing scanpath and proportional fixation duration on lines for each participant during

C++ bug localization.

ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:24 N. Mansoor et al.

Fig. 6. Alpscarf showing scanpath and proportional fixation duration on lines for each participant during

Python bug localization.

s

t

c

r

i

w

A

p

b

r

t

s

(

a

p

p

o

fi

W

b

1

A

pent a relatively longer time than others. The normalized view helps in comparing the Alpscarfs
o better discover patterns. In the Alpscarfs, the mountains (the hills over the fixations) represent
onforming to the expected fixation order (such as reading a program line by line), and the valleys
epresent the revisits over the AOIs.

Figures 5 and 6 show the Alpscarfs of the fixations of 11 people. The fixations on the line contain-
ng the bug are specified with the color red. A green checkmark is placed next to the participants
ho answered the tasks correctly, and a red X is placed next to those who answered incorrectly.
s mentioned earlier, we do not have any source code fixations for P6 and P12. Thus, these partici-
ants are not included in the visualization. P12 completed both tasks incorrectly, and P6 completed
oth tasks correctly. Furthermore, for better visibility of the data visualization in the article, we
emoved the Alpscarf of P9 in Figure 5 , as that participant spent an unusually long time on the
ask. Despite the normalization of the width of the Alpscarfs, the scan pattern of P9 was not ob-
ervable. We also removed P8 from Figure 6 , as that participant only fixated on one area of interest
PrintNeg), and there was no pattern to be studied. The scan patterns that were removed from the
rticle to increase readability are included in the replication package [40].

For the bug fixing tasks, a bug was introduced on a single line of the source code. Knowing when
articipants identified the bug is essential to understanding the problem-solving behavior of the
articipants. To investigate the timing of when participants looked the buggy line while working
n the task, we segmented the data into ten sections. We computed the percentage of the time spent
xating on the line containing the bug out of the time spent fixating on any line in the program.
e then compared these percentages. These bug localization fixation duration distributions can

e seen in Figure 7 for Stimulus 1 (Python) and in Figure 7 (b) for Stimulus 2 (C++).
We see a pattern of initial decrease of the fixations on the line containing the bug in the Stimulus

 bug localization timeline. It seems to indicate that participants read past the bug in the program,
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:25

Fig. 7. Timeline of the percentage of time spent looking at buggy lines in Python and C++ Stimuli.

p

r

t

a

l

s

t

t

f

l

a

P

t

s

s

b

t

a

I

s

i

t

t

t

i
otentially while reading for comprehension, and returned to the line containing the bug after
eading other parts of the program. Figure 6 confirms that most participants spent time looking at
he line containing the bug at the beginning of the task. The Alpscarf shows participants looking
t the buggy line more and longer at the beginning stages of the task and coming back to it again
ater on (Line Reversed). This is expected, since, in these two stimuli, the bugs are located in a
imilar relative position in the code: line 5 of 9 in Stimulus 1 and line 15 of 26 in Stimulus 2. As such,
he initial reading of a program should look similar if participants read past the line containing
he bug.

We analyzed Stimulus 2’s bug localization timeline to compare the participants who correctly
ound and corrected the bug and those who failed to find and correct the bug. However, due to the
imitations of source code AOI mapping mentioned in Section 4.5.3 , we could not find fixations on
ny source code AOIs for two participants, P6 and P12. P12 completed both tasks incorrectly, while
6 completed both tasks correctly. All the other participants working on Stimulus 1 completed the
ask correctly. As for Stimulus 2, aside from P6 and P12, eight participants submitted the correct
olutions to the task and four participants gave incorrect answers to the task.

Looking at overall patterns in the bug localization timelines for Stimulus 2 (Figure 7 (b)), we
ee that the segment with the highest percentage of duration time spent on the line containing a
ug occurs within the first 20% of the timeline. This indicates that participants spent significant
ime at the beginning of the bug localization task looking at the line containing the bug. This is
lso confirmed by Figure 5 , in which we can observe that most participants have fixated on line
fLine2 containing the bug early in the task.

Comparing the bug localization timeline between correct and incorrect solutions can lend in-
ight into the participants’ different behaviors. We notice in Figure 5 that the participants with
ncorrect answers (P01, P07, P11, P13) had a higher percentage of fixations on the line containing
he bug in the middle of the task. This can also be seen in the timeline data (Figure 7 (b)). However,
he participants who answered the task correctly, mostly looked at the line containing the bug at
he beginning of the task.

5.4.2 Context of Fixations on Line Containing Bug. The bug localization timeline focused on
dentifying when participants looked at a line containing a bug, but it did not help us understand
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:26 N. Mansoor et al.

Table 7. Windowed Source Code AOI Fixation Duration Distribution For Correct Versus Incorrect

Solutions For Stimulus 2 (C++)

Line Code Correct Incorrect

Solution Solution

Main

#include < iostream >

3.03% 15.14%

#include < string.h >

#define MAX_SIZE 256

using namespace std;

int main()

Cout

char word[MAX_SIZE];

8.26% 9.20%

cout << ‘‘Please enter a phrase to be translated: ’’;

cin.get(word, MAX_SIZE);

IfCond if(strlen(word) > 0) 5.24% 11.43%

IfLine1 char* first = & word[0]; 14.00% 21.28%

IfLine2 * char* last = & word[strlen(word)]; 24.14% 20.05%

WhileCond while(first < last) 23.52% 13.00%

WhileLine1 char tmp = *first; 8.87% 12.27%

WhileLine2 *first = *last; 7.34% 10.90%

WhileLine3 *last = tmp; 10.33% 3.49%

WhileLine4 ++first; 4.47% 0.69%

WhileLine5 --last; 4.16% 2.09%

Output — 2.25% 4.74%

*indicating where the bug is located.

t

t

I

b

s

w

t

T

l

fi

fi

F

t

u

t

t

t

p

r

t

F

A

he context of those fixations. We wanted to understand whether the participants were reading
he program in a linear order or if they were relating another line to the line containing the bug.
nvestigating this context allows us to get a better sense of the participant’s strategy to locate the
ug.

To learn the context of what was looked at before fixations on the line containing the bug, we
pecified a criterion and filtered the fixations based on that criterion. Our criteria were “fixations
ithin five fixations of a fixation on the line containing the bug.” Some of the fixations that fall into

his criteria are fixations on the line that contains the bug, but we do not include those fixations.
his windowed fixation dataset can then allow us to understand the context of the fixations on the

ine containing the bug by contrasting it with the overall distribution of fixations on the stimuli.
We first analyze the distributions of Stimulus 2 (C++) shown in Table 6 . The distribution of

xation duration on the source code AOIs is reported on the overall dataset and the windowed
xation dataset. We can see that there exist several differences between these two distributions.
irst, the line containing the bug, IfLine2 , makes up a larger percentage of fixation duration in
he windowed context. In addition, the line AOIs immediately before and after IfLine2 also make
p a large fixation duration percentage. This shows that participants looked at the lines closer to
he bug before reading the line containing the bug.

Comparing participants with a correct solution and incorrect solutions in Table 7 , we can see
hat differences in the windowed fixation datasets exist between these participants. First, par-
icipants with an incorrect solution looked at the source code AOIs above IfLine2 for a longer
ercentage of time than participants with a correct solution. The high percentage of fixation du-
ation on the first AOI, Main , indicates that they started from the top of the program and read to
he line containing the bug multiple times throughout the task. This pattern can be observed in
igure 5 in participants who answered the task incorrectly. In addition, we see that the AOI imme-
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:27

Table 8. Overall Source Code AOI Distribution Versus Windowed Source Code AOI Distribution for

Stimulus 1 (Python)

Line Code Overall Windowed

Duration Duration

Start #! usr/bin/python 8.71%

3.40%

Input word = input(‘Please inser a phrase:’) 4.87%

4.49%

Replace x = word.replace(‘‘’’,‘‘’’) 7.54%

9.10%

Reversed* y = ‘‘.join(reversed(x)) 17.17%

28.72%

If if (x.lower() == y.lower()): 21.12%

29.41%

PrintPos print(‘{} is a palindrome’.format(word)) 16.63%

13.74%

PrintNeg

else:
34.96 23.93

print (‘{} is not a palindrome’.format(word))

d

w

f

c

W

s

e

t

a

l

c

w

p

o

t

F

t

F

a

e

t

b

w

p

d

t

i

t

b

p

iately after IfLine2 is looked at with a lower percentage of fixation duration than participants
ho correctly found the bug, indicating that they did not regress to the line containing the bug

rom the WhileCond AOI as often.
Overall, it seems that participants with a correct solution seem to have fixations that are fo-

used on lines that are physically close to the bug before looking at the line containing the bug.
e can also observe this in Figure 5 , which shows us that the participants with correct answers

pend significant time looking at the line WhileCond . This is in line with the findings of Peterson
t al. [52], stating that participants view related lines together. The replication package contains
he entire source code mapping of lines with the line mnemonic label we use here (i.e., WhileCond
nd such).

Next, we analyze the distributions of Stimulus 1 (Python) shown in Table 8 . First, we see that the
ine containing the bug, Reversed , was looked at for a higher percentage of time in the windowed
ontext. While the AOIs immediately before and after the line containing the bug are looked at
ith a higher percentage of fixation duration in the windowed dataset, the difference is not as
ronounced as in the line immediately following it. However, we still see that the fixation duration
f the fixations before looking at the line containing the bug is higher on the adjacent lines than
he overall duration during the task.

5.4.3 Observations from the Alpscarfs. Looking closer into the participants’ scan patterns in
igure 5 and 6 , in which the AOI of the line containing the bug is in the color red, we can see
hat the line contained the bug was more frequently fixated on in the Python bug fixing task.
igure 6 shows that P01, P03, P04, P05, P09, P10, and P14 all looked at the line containing the bug
t the beginning of the Python bug fixing task, and they frequently revisited that AOI until the
nd of the task, indicating the importance of the line to the readers. The Alpscarf also shows that
he participants did not necessarily read the Python code in order, and they went back and forth
etween the different lines many times.
In the C++ bug fixing task, as seen in Figure 5 , we can see different patterns in participants

ho did not answer the task correctly. We can see a more chronological reading pattern in some
articipants reading the C++ bug fixing code (P01, P02, P03, P4, P14) compared to Python. We
o not see a similar pattern in all the participants who solved the task correctly, as some visited
he lines in the order they were written, and some did not. Out of the participants who answered
ncorrectly, P01 and P13 fixated on the line containing the bug a few times at the beginning of the
ask, but the fixations were very short. In particular, P01 did not go back to the line containing the
ug at all. Both P07 and P11 revisited the line containing the bug multiple times, but they did not
rovide the correct answer to the task.
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:28 N. Mansoor et al.

Table 9. Metrics Used in RQ4

Language Metric Correct Incorrect p-value Effect Size

Python Percent Time Till First Edit 13.44% 44.10% 0.0146 * −0.7460
Total Time Till First Edit 107.09 s 177.71 s 0.0195 * −0.7143
Lines Added 9.2222 4.2857 0.0186 * 0.7143
Confidence Level 4.0000 2.4286 0.0045 * 0.7143
Difficulty 1.7778 2.4286 0.1005 −0.4762
Participant Count 7 7

C++ Percent Time Till First Edit 23.65% 91.75% 0.0114 * −1.0000
Total Time Till First Edit 122.35 s 333.77 s 0.0115 * −1.0000
Lines Added 7.8333 0.0000 0.0108 * 1.0000
Confidence Level 3.6667 1.0000 0.0054 * 1.0000
Difficulty 1.9167 2.0000 0.9367 −0.0556
Participant Count 11 3

* p < 0 .05 .

fi

l

c

w

a

a

i

o

t

t

b

p

p

e

s

b

n

5

S

e

m

b

p

o

d

n

t

A

Finally, we compared the scan patterns of some of the individual participants across the bug
xing tasks in the two languages. As an example, P04 worked on the C++ task in a very chrono-

ogical manner, starting from the beginning of the source code and reading it to the end, only to
ome back later and re-read the source again. The same participant did not follow such a method
hile working on the Python task. They went back and forth between the AOIs in the Python code

nd read the code multiple times, resulting in many fixations over the buggy line. The participant
nswered both questions correctly, indicating that either the type of bug required longer fixations
n Python or that both methods of code reading work well for this particular participant. As an-
ther example, P13, who answered the C++ task incorrectly and the Python task correctly, read
he C++ code lines more in the order they were written but chose another approach for reading
he Python code. We can also see longer fixations from P13 on the buggy line in the Python task
ut infrequent and shorter fixations in the buggy line in the C++ task.

Overall, even though we could not find a very clear pattern in the scan patterns of the partici-
ants, comparing the patterns still provided some insight into the individuals’ choices and reading
atterns. It is possible that these observations account for the individual differences that occur in
ach person as they are building the mental model for the programs.

RQ3 Finding: The results show us that the participants pay the most attention to the lines
urrounding the buggy line. Most participants did not read the code linearly and they kept going
ack to the buggy line and the lines surrounding it. We also observe that each participant did not
ecessarily follow the same reading patterns for both Python and C++ tasks.

.5 RQ4: Problem Solving Behavior in New Feature Tasks

ince new feature tasks, by definition, require the students to change the code, we investigate
diting behavior to address this research question. We explain in Section 4.5.3 why eye-tracking
easures are not used during editing as they are not reliably mapped to edited code and no vendor-

ased software supports this to date. Research prototypes such as Reference [22] have some sup-
ort for editing (only in Atom), however, our study was not done with their framework. We plan
n using the iTrace framework for future studies as it significantly simplifies the mapping of gaze
ata on tokens [23 , 84]. Similar to RQ3, this research question is exploratory in nature and does
ot have a formal hypothesis. Table 9 shows the different metrics used in RQ4 and the results of
he statistical tests comparing them.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:29

a

p

d

w

S

t

t

s

t

t

t

t

i

t

w

o

h

s

D

c

a

fi

a

a

b

u

t

a

W

s

n

l

7

n

W

t

t

t

o

m

l

5.5.1 Time to First Edit. To investigate the editing behavior of the participants in the feature
ddition task, the first metric considered is the time until the first edit of the source code. Before
articipants can add a feature, they must understand and comprehend the program. While they
o not need to understand the entirety of the program to add a feature, they must have familiarity
ith the source code and know what code needs to be added and where it needs to be added. For

timulus 3 using Python, we found that participants who correctly completed the feature addition
ask waited 107.09 s on average before making their first edit, while the participants who failed
o correctly complete the feature addition task waited 177.71 s on average. This difference was
tatistically significant according to a Wilcoxon test (p = 0 . 0195) with a large effect size according
o its Cliff’s Delta (d = 0 . 7143).

For Stimulus 4 using C++, we found that participants who correctly completed the feature addi-
ion task waited 122.35.09 s on average before making their first edit, while participants who failed
o correctly complete the feature addition task waited 333.77 s on average. This difference was sta-
istically significant according to a Wilcoxon test (p = 0 . 0115) with a large effect size according to
ts Cliff’s Delta (d = 1 . 00).

To adjust for the total time that the feature addition task took, we also compared the time until
he first edit in terms of percentage of total time (TTFE Percentage). For Stimulus 3 (Python),
e found that, on average, participants who correctly completed the feature addition had 13.44%
f the total time pass before making the first edit, and participants with an incorrect solution
ad 44.10% of the total time pass before making the first edit. This difference was statistically
ignificant according to a Wilcoxon test (p = 0 . 0146) with a large effect size according to its Cliff’s
elta (d = 0 . 7460). For Stimulus 4 (C++), we found that, on average, participants who correctly

ompleted the feature addition had 23.65% of the total time passed before making the first edit,
nd participants with an incorrect solution had 91.75% of the total time passed before making the
rst edit. This difference was statistically significant according to a Wilcoxon test (p = 0 . 0114) with
 large effect size according to its Cliff’s Delta (d = 1 . 0000).

5.5.2 Added Lines. Another aspect of feature addition to investigate is the number of lines
dded to the source code. We found that the number of lines added to the source code differed
etween participants with a correct solution and participants with an incorrect solution. For Stim-
lus 3 (Python), participants with a correctly implemented solution added an average of 9.22 lines
o the source code, while participants with an incorrectly implemented solution added an aver-
ge of 4.28 lines to the source code. This difference was statistically significant according to a
ilcoxon test (p = 0 . 0186) with a large effect size according to its Cliff’s Delta (d = 0 . 714). Of the

even trials that resulted in an incorrectly implemented feature addition task, three solutions did
ot add any lines to the source code, one added 12 lines, while the remaining three added six

ines.
For Stimulus 4 (C++), participants with a correctly implemented solution added an average of

.83 lines to the source code, while participants with an incorrectly implemented solution did
ot add any lines to the source code. This difference was statistically significant according to a
ilcoxon test (p = 0 . 0108) with a large effect size according to its Cliff’s Delta (d = 1 . 0000). Only

hree participants failed to complete the task, two of whom did not make any attempts to change
he source code.

RQ4 Finding: Results show significant differences between the editing related metrics between
he two groups of participants with correct and incorrect answers to the feature addition task. We
bserve that the participants who make an edit in the earlier stages of working on the task are
ore likely to answer the question correctly. The participants with correct answers also add more

ines to the code.
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:30 N. Mansoor et al.

5

W

s

i

f

m

o

a

a

a

r

e

b

c

t

t

a

t

fi

s

b

i

d

o

b

o

6

I

t

p

t

w

fi

W

c

s

d

l

a

C

t

A

.6 Threats to Validity

e discuss the possible threats to validity for internal, external, construct, and conclusion and
tate how we tried to mitigate them.

Internal validity : While we do compare tasks based on the language and task type to determine
f language and task type have an effect on eye movement patterns of programmers, it is possible
or a different but comparable task to have a different difficulty level to a certain programmer,
eaning that even if we present equally difficult but different tasks some programmers may find

ne task to be more difficult for them to complete. In addition, we tried to have bug fixing tasks
nd feature addition tasks have a similar level of difficulty. However, we do not claim that these
re representative of all bug fix and feature addition tasks.

External validity : For external validity, the small size of the programs used may limit the gener-
lizability of our results. In addition, our participants were mainly students. Because of this, our
esults may not generalize to a larger population of programmers, including professionals.

Construct validity : Addressing construct validity, we used some thresholds in our analysis. For
xample, in RQ3, we looked at the first five fixations before any fixation on the line containing the
ug. We also chose to use ten segments in the bug localization timeline. Increasing the segment
ount will provide additional granularity, but the small sample count may cause gaps in the dataset
o appear. We believe that ten segments balance these two goals for our purposes. In RQ4, we used
he time until the first edit as a proxy for when participants were done understanding the program
nd began to add a feature. However, a participant can begin adding a feature and continue reading
he program for comprehension after editing has begun. In RQ3, we looked at the distribution of
xation duration over the AOIs of the source code. These AOIs are mostly line-based AOIs, but
ome closely related lines were grouped together as a single chunk. Chunk-based analysis has
een conducted in previous studies [56], but the decision over which lines to group together can
nfluence the analysis. We mitigate this by only directly comparing the distribution of fixation
urations over AOIs of the same task. These source code AOIs are also only tracked before an edit
ccurs. To mitigate this, we only used the source code AOIs for the bug localization part of the
ug fixing tasks, which should occur in its entirety before they attempt to fix the bug.

Conclusion validity : Finally, for conclusion validity, we used the appropriate statistical tests for
ur inferential statistics.

 DISCUSSION AND IMPLICATIONS

n this article, we looked at the differences in eye movement behaviors in C++ and Python in task
ypes of fixing a bug and adding a new feature.

We found that while working on bug fixing tasks participants had significantly more fixations
er character count of code than when they worked on feature addition tasks. However, regarding
he absolute number of fixations, the bug fixing tasks had significantly fewer fixations as the tasks
ere completed in a shorter amount of time. We also found that bug fixing tasks had an average
xation duration significantly longer than the average fixation duration for feature addition tasks.
e found no significant differences in the total fixation count or duration when adjusted for the

haracter counts in the stimuli between tasks written in Python and tasks written in C++. This
hows that for the overall fixation metrics that we measured, the task type is more important for
etermining these metrics than the language the task is written in.
For the bug fixing tasks, we found several similarities in the navigation behavior during the bug

ocalization phase of the task. First, we found that after the first 20% of the bug localization phase,
 decrease in the percentage of time spent fixating on the line containing the bug was observed for
++. There are a few possible explanations for this behavior. The first is that a large portion of the

ime was not spent locating the bug, but instead, it was spent on understanding the behavior of
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:31

t

t

t

t

t

b

A

a

w

c

a

c

a

l

p

t

P

a

r

m

6

W

i

S

n

T

t

T

t

s

n

c

i

w

w

i

a

t

t

m

s

t

I
he program. After they understand what the program is supposed to do, the bug becomes easier
o spot and they spend little time looking for the bug. The second explanation is that they located
he potential bug early in the bug localization task and spent the remaining time verifying that
he line was indeed a bug by reading the rest of the code. In addition to this behavior, we also saw
hat participants often looked at lines that were physically close to the line containing the bug
efore looking at the bug and quite often regressed back to the line containing the bug from the
OI after it. In Python, however, there were more fixations on the buggy line during the middle
nd latter part of the session for a majority of the participants. This is in direct contrast to what
as observed in C++. This indicates that choice of language plays a role in how students read the

ode looking for the buggy line.
For the feature addition tasks, we found that participants who correctly implemented the task

dded more lines of code to the source code and were quicker to make their first edit to the source
ode than participants who incorrectly implemented it. While the number of lines added is biased
gainst the participants with incorrect solutions, as several incorrect solutions added no additional
ines to the code, the time till the first edit is still a clear divider. It seems to indicate that the
articipants who completed the feature addition task were able to identify where to start adding
he feature quicker or iterate over potential solutions quicker. This difference was seen in both the
ython and C++ tasks. We also found that feature addition tasks had significantly more fixations
nd fixation time spent inside the Requirements AOI. Since participants needed to refer to the
equirements located inside this AOI to correctly implement the new feature, it makes sense that
ore fixations and fixation time were needed for these feature addition tasks.

.1 Relation to Prior Work

ith respect to RQ1, which tried to determine differences in programming languages, we did
ndeed see a difference based on the normalized total fixation count between C++ and Python.
tudents spent more time looking at the Console output when performing Python tasks. We do
ot believe this is due to noise in the data, because both Python and C++ had I/O operations (see
able 4.3). We believe that it might be possible that the Python programs were easier to change and
he students got immediate feedback in the console. The data seems to support this assumption.
his result seems to align with Tshukudu and Cutts [74], where different models were needed to

ransition between programming languages. Murphy et al. also point to the Console view being
elected the most during their collection of interaction data from Java developers in Eclipse [44].

With respect to RQ2-RQ4, which tried to determine differences in task type, the results show sig-
ificant differences in the Total Fixation Count and Total Fixation Duration overall (normalized per
haracter), indicating that participants had more frequent and longer normalized fixations overall
n the bug fixing tasks. These results align with what was reported by Cunningham et al. [18],
here they found the behaviors to change when different task types are used. One possible reason
hy the fixation count might be higher for bug fixing is because the reading strategy when look-

ng for bugs is very different from reading code just to understand what it is doing. When finding
nd fixing bugs, one zeroes into certain parts and traces and re-reads them.

With respect to RQ3 and bug fixing behavior, fixations are found closer to the line containing
he bug right before they look at buggy lines. This behavior is also found in prior work by Pe-
erson et al. [52], indicating that participants view related lines together and using chunking as a
echanism to map eye gazes is replicable in other studies and tasks as well.
Finally, with RQ4, we found that for both C++ and Python, participants could identify where to

tart adding a feature (noted by the time to first edit) quicker and potentially iterate over solutions
o solve the task correctly. Brown et al. collected five years of programmer activity data in a Java
DE, namely, BlueJ [13]. Part of this data includes edit sequences of novices. However, they state
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

2:32 N. Mansoor et al.

t

i

t

s

6

T

t

i

i

p

s

o

s

i

o

C

n

t

t

r

h

o

t

t

s

s

c

b

e

L

d

e

h

G

g

6

O

t

d

t

g

v

p

f

A

hat no study has made use of the code execution and code editing sequences as of yet. It would be
nteresting to see how their results relate to what we found in our study with respect to the time
o first edit and task performance. This is left as a future exercise. The individual differences we
ee in our study are also reported in Jbara et al. [28].

.2 Implications for CS Education Researchers

his is one of the first eye-tracking studies that look at the same individual performing two task
ypes in two programming languages. None of the prior work used the visualization plots shown
n Figures 5 and 6 . This was a new form of data visualization and analysis that is richer than what
s presented in Uwano et al. [77] and Sharif et al. [63]. In the future, researchers looking at scan
atterns can compare not just lines but chunks of lines across time. This is important, because
ometimes a programming plan [55] or beacon [12 , 35] is not necessarily encapsulated in just
ne line. We believe this method of comparison opens up new avenues of research for comparing
tudies with each other in a more scalable way. When analyzing eye-tracking studies, it is also
mportant to account for individual differences that are quite common. We see this in our analysis
f the scarfplots in our study but also in other studies in the literature, such as in Jbara et al. [28].
S education researchers can also benefit from these results by building better tools that guide
ovices in recognizing bugs, thereby advancing the state of the art of teaching novices.
The fact that we have noticed differences in task type within the same individual tells us that

he type of task is extremely important, and as education researchers, we should be studying all
he different types of tasks that developers perform on a daily basis. We name a few, such as
efactoring, summarization, bug fixing, new feature addition, testing, and code review. Eye tracking
as only mainly studied summarization, with a few papers looking into bug localization and only
ne on code review [11]. In addition, most work is done on the Java programming language. It is
ime to start branching out to other languages, using more realistic tasks, and also multiple task
ypes with varying complexities [3 , 21]. Especially now that we have eye-tracking frameworks
uch as iTrace [23 , 84] that make the running and mapping of gazes to tokens relatively easy and
traightforward.

Kersten and Murphy provide a task context model to help with developer productivity [32]. The
ontext is created by monitoring a programmer’s activity and extracting structural relationships
etween program artifacts. CS education researchers can consider doing something similar with
ye-tracking data where when enabled, the eyes are tracked while the programmer is fixing a bug.
ater, these scan paths can eventually be used to replay the thought process to the same or another
eveloper via visualizations. Such future tools would help recommendation systems as well, where
ye gaze history could be used to recommend areas a student should look at, based on how they
ave viewed it in the past to keep their mental model in sync with their prior debugging session.
iven the advancement in eye-tracking infrastructure [23 , 84] and the affordability of research-
rade trackers, this is not a far fetched goal.

.3 Implications for CS Educators—Teaching

ur findings show a more substantial difference in eye movement patterns in different task types
han in various programming languages. This finding indicates that the comprehension patterns
iffer regarding the goal of the task at hand and suggests a need for finding different teaching
echniques for solving various types of programming tasks, no matter what the programming lan-
uage taught to the students is. Further investigation into differences of programming languages
ersus differences of tasks on learning and comprehension, can offer some insight into “Which
rogramming languages should we teach to students?” [48] and can help in determining what
actors other than language are the most important in program comprehension.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:33

t

s

o

c

w

w

w

t

e

a

7

T

t

p

f

fi

i

t

t

b

W

t

b

w

e

s

s

t

e

A

W

v

R

Due to the comprehension pattern differences between tasks, we also suggest that instructors
ry to include different tasks in programming homework (e.g., bug fixing, adding features, and
ummarization) to improve different program comprehension skills in the students, instead of
nly focusing on full implementation of specific problems. Students need more practice reading
ode that is not written by them so they can practice their program comprehension skills and learn
hen to switch back and forth between different models of comprehension [12 , 35 , 50 , 58 , 79]. It
ill also prove to be more useful in their future careers, as software developers do incremental
ork on partial code similar to subgoals [43] instead of always writing code from scratch.
Finally, CS educators can better support student debugging if they know what novice students

ypically look at during various types of tasks. They can also actively teach students not to fear
diting the code early on, because we see a correlation between time to edit and accuracy in feature
ddition task performance.

 CONCLUSIONS AND FU T URE WORK

he article presents an eye-tracking study on how the type of task (bug fix and new feature addi-
ion) and language (C++ versus Python) affect student programmer behavior. We found that the
articipants had significantly longer average fixation duration and total fixation duration adjusted
or source code length during Bug fixing tasks compared to the feature addition tasks. We also
nd that the total fixation duration adjusted for source code length was significantly higher dur-

ng tasks done in Python than in C++, but the effect was not as pronounced. We found that during
he Bug fixing task in C++ many participants read the line containing the bug early in the task and
hen continued to other parts of the code before ultimately returning to the line containing the
ug. In Python however, they read the buggy line many times in the middle or later in the session.
e also found that participants looked at lines next to the line containing the bug before looking at

he line containing the bug more often than the overall distribution and that they often regressed
ack to the line containing the bug from the lines following it. Finally, we found that participants
ho successfully completed a feature addition task took significantly less time to make the first

dit to the source code.
As part of future work, we plan on conducting a study using modern eye-tracking frameworks

uch as iTrace [23 , 84] to see how participants traverse through larger and more realistic open
ource systems written in Python, Java, and C++. This would allow us to see if our results scale
o a much larger realistic setting. We will also vary additional factors like task complexity within
ach task type.

CKNOWLEDGMENTS

e thank all the participants of this study for their time. We also thank the reviewers for the
aluable feedback received.

EFERENCES

[1] Nahla J. Abid, Jonathan I. Maletic, and Bonita Sharif. 2019. Using developer eye movements to externalize the mental

model used in code summarization tasks. In Proceedings of the 11th ACM Symposium on Eye Tracking Research and

Applications (ETRA’19) . ACM, New York, NY, Article 13, 9 pages. DOI: https://doi.org/10.1145/3314111.3319834

[2] Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I. Maletic. 2019. Developer reading

behavior while summarizing java methods: Size and context matters. In Proceedings of the IEEE/ACM 41st International

Conference on Software Engineering (ICSE’19) . IEEE, 384–395. DOI: https://doi.org/10.1109/ICSE.2019.00052

[3] Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feitelson. 2019. Syntax, predicates, idioms—What really affects

code complexity? Empir. Softw. Eng. 24 (2019), 287–328.

[4] Anthony Allevato and Stephen H. Edwards. 2010. Discovering patterns in student activity on programming assign-

ments. In Proceedings of the ASEE Southeastern Section Annual Conference and Meeting .
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.1145/3314111.3319834
https://doi.org/10.1109/ICSE.2019.00052

2:34 N. Mansoor et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

[5] Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and Marcus Nyström. 2017. One algorithm

to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behav. Res. Methods

49, 2 (2017), 616–637. DOI: https://doi.org/10.3758/s13428- 016- 0738- 9

[6] Christoph Aschwanden and Martha Crosby. 2006. Code scanning patterns in program comprehension. In Proceedings

of the 39th Hawaii International Conference on System Sciences (HICSS’06) .

[7] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson R. Murphy-Hill, and Chris Parnin.

2017. Do developers read compiler error messages? In Proceedings of the 39th International Conference on Software

Engineering (ICSE’17) . 575–585. DOI: https://doi.org/10.1109/ICSE.2017.59

[8] Roman Bednarik. 2007. Methods to Analyze Visual Attention Strategies: Applications in the Studies of Programming .

University of Joensuu.

[9] Roman Bednarik and Justus Randolph. 2008. Studying cognitive processes in computer program comprehension.

Passive Eye Monitor. (2008), 373–386.

10] Roman Bednarik and Markku Tukiainen. 2006. An eye-tracking methodology for characterizing program compre-

hension processes. In Proceedings of the Symposium on Eye Tracking Research and Applications . 125–132.

11] Andrew Begel and Hana Vrzakova. 2018. Eye movements in code review. In Proceedings of the Workshop on Eye

Movements in Programming (EMIP’18) . ACM, New York, NY, Article 5, 5 pages. DOI: https://doi.org/10.1145/3216723.

3216727

12] Ruven Brooks. 1983. Towards a theory of the comprehension of computer programs. Int. J. Man-Mach. Studies 18,

6 (1983), 543–554. DOI: https://doi.org/10.1016/S0020- 7373(83)80031- 5

13] Neil C. C. Brown, Amjad AlTadmri, Sue Sentance, and Michael Kölling. 2018. Blackbox, five years on: An evaluation of

a large-scale programming data collection project. In Proceedings of the ACM Conference on International Computing

Education Research (ICER’18) , Lauri Malmi, Ari Korhonen, Robert McCartney, and Andrew Petersen (Eds.). ACM,

196–204. DOI: https://doi.org/10.1145/3230977.3230991

14] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H. Paterson, Carsten Schulte, Bonita Sharif,

and Sascha Tamm. 2015. Eye movements in code reading: Relaxing the linear order. In Proceedings of the IEEE 23rd

International Conference on Program Comprehension . IEEE, 255–265.

15] Teresa Busjahn, Carsten Schulte, Bonita Sharif, Andrew Begel, Michael Hansen, Roman Bednarik, Paul Orlov, Petri

Ihantola, Galina Shchekotova, and Maria Antropova. 2014. Eye tracking in computing education. In Proceedings of

the 10th Annual Conference on International Computing Education Research . 3–10.

16] Tony Clear, J. L. Whalley, Phil Robbins, Anne Philpott, Anna Eckerdal, and Mikko-Jussi Laakso. 2011. Report on

the final bracelet workshop: Auckland university of technology, September 2010. https://openrepository.aut.ac.nz/

handle/10292/3521

17] Martha E. Crosby and Jan Stelovsky. 1990. How do we read algorithms? A case study. Computer 23, 1 (Jan. 1990),

24–35.

18] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guzdial. 2017. Using tracing and sketching to

solve programming problems: Replicating and extending an analysis of what students draw. In Proceedings of the

ACM Conference on International Computing Education Research . 164–172.

19] Françoise Détienne and Elliot Soloway. 1990. An empirically-derived control structure for the process of program

understanding. Int. J. Man-Mach. Studies 33, 3 (1990), 323–342.

20] Andrew Duchowski. 2007. Eye Tracking Methodology: Theory and Practice . DOI: https://doi.org/10.1007/978- 1- 84628-

609-4

21] Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an analysis of program complexity from a cognitive per-

spective. In Proceedings of the ACM Conference on International Computing Education Research . 21–30.

22] Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S. Peterson, Venera Arnaoudova, Bonita Sharif,

and Jonathan Maletic. 2021. gazel: Supporting source code edits in eye-tracking studies. In Proceedings of the

IEEE/ACM 43rd International Conference on Software Engineering (ICSE’21) . 69–72. DOI: https://doi.org/10.1109/ICSE-

Companion52605.2021.00038

23] Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic, and Bonita Sharif. 2018. itrace: Eye tracking

infrastructure for development environments. In Proceedings of the ACM Symposium on Eye Tracking Research and

Applications . ACM, 105.

24] Yann-Gaël Guéhéneuc. 2006. TAUPE: Towards understanding program comprehension. In Proceedings of the Confer-

ence of the Center for Advanced Studies on Collaborative Research (CASCON’06) . IBM Corp., Riverton, NJ, Article 1.

DOI: https://doi.org/10.1145/1188966.1188968

25] Dan Witzner Hansen and Qiang Ji. 2009. In the eye of the beholder: A survey of models for eyes and gaze. IEEE Trans.

Pattern Anal. Mach. Intell. 32, 3 (2009), 478–500.

26] Yiling Hu, Bian Wu, and Xiaoqing Gu. 2017. An eye tracking study of high-and low-performing students in solving

interactive and analytical problems. J. Edu. Technol. Soc. 20, 4 (2017), 300–311.
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/3230977.3230991
https://openrepository.aut.ac.nz/handle/10292/3521
https://openrepository.aut.ac.nz/handle/10292/3521
https://doi.org/10.1007/978-1-84628-609-4
https://doi.org/10.1007/978-1-84628-609-4
https://doi.org/10.1109/ICSE-Companion52605.2021.00038
https://doi.org/10.1109/ICSE-Companion52605.2021.00038
https://doi.org/10.1145/1188966.1188968

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:35

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

27] Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran, Mirela Gutica, Birte Heinemann, Eileen

Kraemer, Violetta Lonati, Claudio Mirolo, et al. 2019. Fostering program comprehension in novice programmers-

learning activities and learning trajectories. In Proceedings of the Working Group Reports on Innovation and Technology

in Computer Science Education . 27–52.

28] Ahmad Jbara and Dror G. Feitelson. 2017. How programmers read regular code: A controlled experiment using eye

tracking. Empir. Softw. Eng. 22, 3 (2017), 1440–1477.

29] Marcel A. Just and Patricia A. Carpenter. 1980. A theory of reading: From eye fixations to comprehension. Psychol.

Rev. 87, 4 (1980), 329.

30] Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. 2021. Through (tracking) their eyes: Abstraction and complexity

in program comprehension. ACM Trans. Comput. Educ. 22, 2, Article 17 (Nov. 2021), 33 pages. DOI: https://doi.org/10.

1145/3480171

31] Bernhard Katzmarski and Rainer Koschke. 2012. Program complexity metrics and programmer opinions. In Proceed-

ings of the 20th IEEE International Conference on Program Comprehension (ICPC’12) . IEEE, 17–26.

32] Mik Kersten and Gail C. Murphy. 2006. Using task context to improve programmer productivity. In Proceedings of

the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE’06), Michal Young and

Premkumar T. Devanbu (Eds.). ACM, 1–11. DOI: https://doi.org/10.1145/1181775.1181777

33] Katja Kevic, Braden Walters, Timothy Shaffer, Bonita Sharif, David C. Shepherd, and Thomas Fritz. 2017. Eye gaze

and interaction contexts for change tasks—Observations and potential. J. Syst. Softw. 128 (2017), 252–266. DOI: https:

//doi.org/10.1016/j.jss.2016.03.030

34] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An exploratory study of how developers

seek, relate, and collect relevant information during software maintenance tasks. IEEE Trans. Softw. Eng. 32, 12 (2006),

971–987. DOI: https://doi.org/10.1109/TSE.2006.116

35] Stanley Letovsky. 1987. Cognitive processes in program comprehension. J. Syst. Softw. 7, 4 (1987), 325–339. DOI: https:

//doi.org/10.1016/0164- 1212(87)90032- X

36] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further evidence of a relationship between explaining, tracing

and writing skills in introductory programming. ACM SIGCSE Bull. 41, 3 (2009), 161–165.

37] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Relationships between reading, tracing and

writing skills in introductory programming. In Proceedings of the 4th International Workshop on Computing Education

Research . 101–112.

38] Naser Al Madi, Cole S. Peterson, Bonita Sharif, and Jonathan I. Maletic. 2021. From novice to expert: Analysis of

token level effects in a longitudinal eye tracking study. In Proceedings of the 29th IEEE/ACM International Conference

on Program Comprehension (ICPC’21) . IEEE, 172–183. DOI: https://doi.org/10.1109/ICPC52881.2021.00025

39] Niloofar Mansoor, Hamid Bagheri, Eunsuk Kang, and Bonita Sharif. 2023. An empirical study assessing software mod-

eling in alloy. In Proceedings of the IEEE/ACM 11th International Conference on Formal Methods in Software Engineering

(FormaliSE’23) . IEEE, 44–54.

40] Niloofar Mansoor, Bonita Sharif, and Cole S. Peterson. 2023. Assessing the Effect of Programming Language and Task

On Eye Movements—Replication Package. Retrieved from https://osf.io/uh95r

41] Lauren E. Margulieux, Briana B. Morrison, Baker Franke, and Harivololona Ramilison. 2020. Effect of implementing

subgoals in code.org’s intro to programming unit in computer science principles. ACM Trans. Comput. Educ. 20,

4 (2020), 26:1–26:24. DOI: https://doi.org/10.1145/3415594

42] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what you did last summer - An investigation of

how developers spend their time. In Proceedings of the IEEE 23rd International Conference on Program Comprehension .

25–35. DOI: https://doi.org/10.1109/ICPC.2015.12

43] Briana B. Morrison, Adrienne Decker, Lauren E. Margulieux, and Austin Cory Bart. 2022. Subgoals for CS1 in python.

In Proceedings of the ACM Conference on International Computing Education Research (ICER’22) , Jan Vahrenhold, Kathi

Fisler, Matthias Hauswirth, and Diana Franklin (Eds.). ACM, 44–45. DOI: https://doi.org/10.1145/3501709.3544283

44] Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How are java software developers using the eclipse IDE? IEEE

Softw. 23, 4 (July 2006), 76–83. DOI: https://doi.org/10.1109/MS.2006.105

45] Greg L. Nelson and Amy J. Ko. 2018. On use of theory in computing education research. In Proceedings of the ACM

Conference on International Computing Education Research (ICER’18) , Lauri Malmi, Ari Korhonen, Robert McCartney,

and Andrew Petersen (Eds.). ACM, 31–39. DOI: https://doi.org/10.1145/3230977.3230992

46] Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A survey on the usage of eye-tracking in

computer programming. ACM Comput. Surveys 51, 1 (2018), 5.

47] Unaizah Obaidellah, Tanja Blascheck, Drew T. Guarnera, and Jonathan Maletic. 2020. A fine-grained assessment on

novice programmers’ gaze patterns on pseudocode problems. In Proceedings of the ACM Symposium on Eye Tracking

Research and Applications . 1–5.
ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.1145/3480171
https://doi.org/10.1145/3480171
https://doi.org/10.1145/1181775.1181777
https://doi.org/10.1016/j.jss.2016.03.030
https://doi.org/10.1016/j.jss.2016.03.030
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1109/ICPC52881.2021.00025
https://osf.io/uh95r
https://doi.org/10.1145/3415594
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1145/3501709.3544283
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1145/3230977.3230992

2:36 N. Mansoor et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

A

48] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams, Jens Bennedsen, Marie Devlin, and

James Paterson. 2007. A survey of literature on the teaching of introductory programming. Working Group Reports

on ITiCSE on Innovation and Technology in Computer Science Education (2007), 204–223.

49] Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C. Hofmeister, and André Brechmann. 2018.

Simultaneous measurement of program comprehension with FMRI and eye tracking: A case study. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement . 1–10.

50] Nancy Pennington. 1987. Stimulus structures and mental representations in expert comprehension of computer pro-

grams. Cogn. Psychol. 19, 3 (1987), 295–341. DOI: https://doi.org/10.1016/0010- 0285(87)90007- 7

51] Cole S. Peterson, Nahla J. Abid, Corey A. Bryant, Jonathan I. Maletic, and Bonita Sharif. 2019. Factors influencing dwell

time during source code reading: A large-scale replication experiment. In Proceedings of the 11th ACM Symposium

on Eye Tracking Research and Applications (ETRA’19) , Krzysztof Krejtz and Bonita Sharif (Eds.). ACM, 38:1–38:4.

DOI: https://doi.org/10.1145/3314111.3319833

52] Cole S. Peterson, Jonathan A. Saddler, Tanja Blascheck, and Bonita Sharif. 2019. Visually analyzing students’ gaze

on C++ code snippets. In Proceedings of the 6th International Workshop on Eye Movements in Programming (EMIP’19) .

IEEE Press, Piscataway, NJ, 18–25. DOI: https://doi.org/10.1109/EMIP.2019.00011

53] Cole S. Peterson, Jonathan A. Saddler, Natalie M. Halavick, and Bonita Sharif. 2019. A gaze-based exploratory study

on the information seeking behavior of developers on stack overflow. In Proceedings of the CHI Conference on Human

Factors in Computing Systems . ACM, LBW2510.

54] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein. 2012. Modeling how students learn

to program. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education . 153–160.

55] Robert S. Rist. 1986. Plans in programming: Definition, demonstration, and development. In Proceedings of the 1st

Workshop on Empirical Studies of Programmers on Empirical Studies of Programmers . Ablex Publishing Corp., 28–47.

56] Jonathan A. Saddler, Cole S. Peterson, Patrick Peachock, and Bonita Sharif. 2019. Reading behavior and compre-

hension of C++ source code-A classroom study. In Proceedings of the International Conference on Human-Computer

Interaction . Springer, 597–616.

57] Jonathan A. Saddler, Cole S. Peterson, Sanjana Sama, Shruthi Nagaraj, Olga Baysal, Latifa Guerrouj, and Bonita Sharif.

2020. Studying developer reading behavior on stack overflow during api summarization tasks. In Proceedings of the

IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER’20) . IEEE, 195–205.

58] Carsten Schulte. 2008. Block model: An educational model of program comprehension as a tool for a scholarly ap-

proach to teaching. In Proceedings of the 4th international Workshop on Computing Education Research . ACM, 149–160.

59] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H. Paterson. 2010. An introduction to

program comprehension for computer science educators. In Proceedings of the ITiCSE Working Group Reports . ACM,

65–86.

60] Zohreh Sharafi, Timothy Shaffer, Bonita Sharif, and Yann-Gaël Guéhéneuc. 2015. Eye-tracking metrics in software

engineering. In Proceedings of the Asia-Pacific Software Engineering Conference (APSEC’15) . IEEE, 96–103.

61] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bednarik, and Martha E. Crosby. 2020. A

practical guide on conducting eye tracking studies in software engineering. Empir. Softw. Eng. 25, 5 (2020), 3128–3174.

DOI: https://doi.org/10.1007/s10664- 020- 09829- 4

62] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature review on the usage of eye-

tracking in software engineering. Info. Softw. Technol. 67 (2015), 79–107.

63] Bonita Sharif, Michael Falcone, and Jonathan I. Maletic. 2012. An eye-tracking study on the role of scan time in finding

source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications . 381–384.

64] Bonita Sharif and Jonathan I. Maletic. 2010. An eye tracking study on camelcase and under_score identifier styles. In

Proceedings of the IEEE 18th International Conference on Program Comprehension . IEEE, 196–205.

65] Bonita Sharif and Timothy Shaffer. 2015. The use of eye tracking in software development. In Proceedings of the 9th

International Conference on Foundations of Augmented Cognition (AC’15), Held as Part of HCI International (Lecture

Notes in Computer Science) , Dylan Schmorrow and Cali M. Fidopiastis (Eds.), Vol. 9183. Springer, 807–816. DOI: https:

//doi.org/10.1007/978- 3- 319- 20816- 9 _ 77

66] Ben Shneiderman and Richard E. Mayer. 1979. Syntactic/semantic interactions in programmer behavior: A model and

experimental results. Int. J. Parallel Program. 8, 3 (1979), 219–238. DOI: https://doi.org/10.1007/BF00977789

67] Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here we go again: Why is it difficult for developers

to learn another programming language? In Proceedings of the 42nd International Conference on Software Engineering

(ICSE’20) , Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 691–701. DOI: https://doi.org/10.1145/3377811.3380352

68] Janet Siegmund, Christian Kästner, Jörg Liebig, Sven Apel, and Stefan Hanenberg. 2014. Measuring and modeling

programming experience. Empir. Softw. Eng. 19, 5 (2014), 1299–1334.

69] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowledge. IEEE Trans. Softw. Eng. SE-10

(10 1984), 595–609. DOI: https://doi.org/10.1109/TSE.1984.5010283
CM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1145/3314111.3319833
https://doi.org/10.1109/EMIP.2019.00011
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1007/978-3-319-20816-9_77
https://doi.org/10.1007/978-3-319-20816-9_77
https://doi.org/10.1007/BF00977789
https://doi.org/10.1145/3377811.3380352
https://doi.org/10.1109/TSE.1984.5010283

Assessing the Effect of Programming Language and Task Type on Eye Movements 2:37

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

R

70] Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowledge. IEEE Trans. Softw. Eng. SE-10,

5 (1984), 595–609. DOI: https://doi.org/10.1109/TSE.1984.5010283

71] Andreas Stefik and Susanna Siebert. 2013. An empirical investigation into programming language syntax. ACM Trans.

Comput. Edu. 13, 4, Article 19 (Nov. 2013), 40 pages. DOI: https://doi.org/10.1145/2534973

72] Margaret-Anne D. Storey. 2006. Theories, tools and research methods in program comprehension: Past, present and

future. Softw. Qual. J. 14, 3 (2006), 187–208. DOI: https://doi.org/10.1007/s11219- 006- 9216- 4

73] Donna Teague and Raymond Lister. 2014. Manifestations of preoperational reasoning on similar programming tasks.

In Proceedings of the 16th Australasian Computing Education Conference (ACE’14), Jacqueline L. Whalley and Daryl J.

D’Souza (Eds.), Vol. 148. Australian Computer Society, 65–74. Retrieved from http://crpit.scem.westernsydney.edu.

au/abstracts/CRPITV148Teague.html

74] Ethel Tshukudu and Quintin Cutts. 2020. Understanding conceptual transfer for students learning new programming

languages. In Proceedings of the ACM Conference on International Computing Education Research . 227–237.

75] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. 2014. An eye-tracking study assessing the compre-

hension of C++ and Python source code. In Proceedings of the Symposium on Eye Tracking Research and Applications .

ACM, 231–234.

76] Phillip Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik. 2020. A randomized controlled trial on the

effects of embedded computer language switching. In Proceedings of the 28th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE’20) , Prem Devanbu, Myra B. Cohen,

and Thomas Zimmermann (Eds.). ACM, 410–420. DOI: https://doi.org/10.1145/3368089.3409701

77] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Ken-ichi Matsumoto. 2006. Analyzing individual per-

formance of source code review using reviewers’ eye movement. In Proceedings of the Symposium on Eye Tracking

Research and Applications (ETRA’06) . ACM, New York, NY, 133–140. DOI: https://doi.org/10.1145/1117309.1117357

78] Anne Venables, Grace Tan, and Raymond Lister. 2009. A closer look at tracing, explaining and code writing skills in

the novice programmer. In Proceedings of the 5th International Workshop on Computing Education Research Workshop

(ICER’09) . ACM, New York, NY, 117–128. DOI: https://doi.org/10.1145/1584322.1584336

79] A. Von Mayrhauser and A. M. Vans. 1995. Program comprehension during software maintenance and evolution.

Computer 28, 8 (1995), 44–55. DOI: https://doi.org/10.1109/2.402076

80] Susan Wiedenbeck. 1986. Beacons in computer program comprehension. Int. J. Man Mach. Stud. 25, 6 (1986), 697–709.

DOI: https://doi.org/10.1016/S0020- 7373(86)80083- 9

81] Chia-Kai Yang and Chat Wacharamanotham. 2018. Alpscarf: Augmenting scarf plots for exploring temporal gaze

patterns. In Proceedings of the CHI Conference on Human Factors in Computing Systems . 1–6.

82] Alfred L. Yarbus. 1967. Eye Movements During Perception of Complex Objects . Springer US, Boston, MA, 171–211.

DOI: https://doi.org/10.1007/978- 1- 4899- 5379- 7 _ 8

83] Sheng Yu and Shijie Zhou. 2010. A survey on metric of software complexity. In Proceedings of the 2nd IEEE Interna-

tional Conference on Information Management and Engineering . IEEE, 352–356.

84] Vlas Zyrianov, Drew T. Guarnera, Cole S. Peterson, Bonita Sharif, and Jonathan I. Maletic. 2020. Automated record-

ing and semantics-aware replaying of high-speed eye tracking and interaction data to support cognitive studies of

software engineering tasks. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution

(ICSME’20) . IEEE, 464–475. DOI: https://doi.org/10.1109/ICSME46990.2020.00051
eceived 12 November 2021; revised 4 September 2023; accepted 12 October 2023

ACM Transactions on Computing Education, Vol. 24, No. 1, Article 2. Publication date: January 2024.

https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/2534973
https://doi.org/10.1007/s11219-006-9216-4
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV148Teague.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV148Teague.html
https://doi.org/10.1145/3368089.3409701
https://doi.org/10.1145/1117309.1117357
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1109/2.402076
https://doi.org/10.1016/S0020-7373(86)80083-9
https://doi.org/10.1007/978-1-4899-5379-7_8
https://doi.org/10.1109/ICSME46990.2020.00051

	1 INTRODUCTION
	2 RESEARCH QUESTIONS
	3 RELATED WORK
	3.1 Computer Science Education-Learning to Program
	3.2 Eye Tracking in Program Comprehension
	3.3 Models in Program Comprehension

	4 METHOD
	4.1 Participant Characteristics
	4.2 Sampling Procedures
	4.3 Conditions and Design
	4.4 Terminology
	4.5 Procedure
	4.6 Measures

	5 EXPERIMENTAL RESULTS
	5.1 Confidence Levels
	5.2 RQ1: Reading Differences between C++ and Python Tasks
	5.3 RQ2: Reading Differences between Bug fixing and Feature Addition Tasks
	5.4 RQ3: Problem Solving Behavior in Bug fixing Tasks
	5.5 RQ4: Problem Solving Behavior in New Feature Tasks
	5.6 Threats to Validity

	6 DISCUSSION AND IMPLICATIONS
	6.1 Relation to Prior Work
	6.2 Implications for CS Education Researchers
	6.3 Implications for CS Educators-Teaching

	7 CONCLUSIONS AND FUTURE WORK
	8 ACKNOWLEDGMENTS
	REFERENCESendgraf

