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A B S T R A C T

Recent reports have shown that individuals from small hometowns show relatively poor face recognition ability
as measured by the Cambridge Face Memory Test or CFMT (Balas & Saville, 2015, 2017), suggesting that the
number of faces present in an individual’s visual environment relates to that individual’s face recognition ability.
We replicate this finding in a sample from a different region (Nebraska) and with more variable age distribution.
We extend the study by using another test of face recognition ability that does not require learning over trials,
and with non-face object recognition tests that share the learning format with the CFMT. We find no hometown
effect in these other tests, although more power would be required to show the CFMT effect is significantly
larger. We use the same dataset to explore whether experience with more faces and cars in larger hometowns
leads to specialization of these abilities. We find strong and substantial support for the hypothesis that the
recognition abilities for faces and for cars are more independent from general object recognition in people from
larger hometowns. This suggests that experience may be critical to the specialization of these abilities.

People differ in how well they can recognize faces and objects
(Dennett et al., 2012; Duchaine & Nakayama, 2006; McGugin, Richler,
Herzmann, Speegle, & Gauthier, 2012; Richler et al., n.d.; Russell,
Duchaine, & Nakayama, 2009). What drives these individual differ-
ences remains an unanswered question. There appears to be a strong
genetic influence on these abilities (Shakeshaft & Plomin, 2015; Wilmer
et al., 2010) and correlational studies also suggest an influence of life
experience (Gauthier et al., 2014; Ryan & Gauthier, 2016; Tanaka,
Kiefer, & Bukach, 2004). In particular, experience stemming from in-
terest in certain domains relates to recognition abilities (Gauthier et al.,
2014; Ryan & Gauthier, 2016) and experience due to categories present
in one’s environment also relates to recognition abilities (e.g., the other-
race effect, De Heering, De Liedekerke, Deboni, & Rossion, 2010;
Sangrigoli, Pallier, Argenti, Ventureyra, & De Schonen, 2005).

Aside from the distribution of different kinds of faces one experi-
ences or the interest one may have individuating objects from various
categories, recent work suggests that the number of exemplars in a
category—in this case, faces—within one’s environment might also
impact recognition ability (Balas & Saville, 2015). Balas and Saville
(2015) reported that people from larger hometowns (those with higher
population densities) performed better on a measure of face recognition
than those from smaller hometowns, a difference the researchers at-
tributed to the fact that those from less dense hometowns likely en-
counter fewer faces during their childhood. Small hometown

individuals would have grown up basing face recognition judgments on
a smaller “face space” (Valentine, 1991) relative to people from larger
towns, which the authors suggest could impair recognition. The result
also aligns with exemplar models wherein performance gains due to
automaticity arise from accumulations of exposures in a given task and
domain (Logan, 1988; Palmeri, 1997). Though an important finding,
the original Balas and Saville (2015) demonstration did not test a
specific explanation for the phenomenon, and was limited in a few
important ways. First, there was no behavioral test with non-face ob-
jects to determine whether hometown size influences faces specifically,
or extends beyond faces into other object domains. Second, only one
type of face learning task was used (the CFMT), leaving open the
question of whether performance on other face tasks would be similarly
impacted. A more recent study provides some evidence that this face
recognition advantage may not extend to all tasks with face stimuli
since Balas & Saville replicated the relative deficit on the CFMT but
found no difference between groups in a card-sorting task with faces
and bodies (Balas & Saville, 2017). Finally, in the 2015 paper, an effect
of hometown population density (hereafter, HPD) was observed on the
face-selective N170 ERP, but the effect was entirely accounted for by a
difference in N170 amplitudes between face and non-face (chair) ca-
tegories in the large hometown group but no difference between faces
and chairs in the small hometown group. In sum, a relative deficit was
observed on the CFMT but it is not clear how specific the effect may be
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in terms of domain and task.
Our first goal was to replicate the effect found in Balas and Saville

(2015) in a larger and more heterogeneous sample recruited from the
University of Nebraska- Lincoln, increasing statistical power and the
ecological validity of the result. Second, we measured recognition
abilities for both faces and other object domains to assess whether the
effect would generalize to another face task that is not a learning task
like the CFMT, and to other learning tasks that share the format of the
CFMT, for non-face domains.

In addition to determining if those from hometowns with lesser
population density showed relatively poor face recognition ability, our
second goal was to compare the degrees of “specialization” of faces and
cars between HPD. It is well established that car recognition correlates
below-average with the recognition of other object categories (McGugin
et al., 2012; Van Gulick, McGugin, & Gauthier, 2016), suggesting that
car recognition is more independent from general object recognition
than other object categories (e.g., birds, mushrooms). Indeed, the dis-
sociation between cars and other object domains is often similar in
extent to what is found between faces and other object domains
(McGugin et al., 2012; Van Gulick et al., 2016). Since the dissociation
between faces and other object domains is often used as evidence that
faces are “special” (e.g. McKone, Kanwisher, & Duchaine, 2007; Yue,
Tjan, & Biederman, 2006), by this standard, cars would also have to be
considered “special.”

Determining that the recognition of cars is “special” (i.e. in-
dependent from that of other object categories) would have important
theoretical ramifications, since an evolutionary explanation for why
faces are special could not apply to cars (given cars have only existed
for the past century or so). Instead, we would have to explore other
possible explanations for the independence of car recognition. For in-
stance, people could have more knowledge about cars, though a recent
study found little evidence that knowledge mediates the correlation
between car recognition and the recognition of novel objects (Richler,
Wilmer, & Gauthier, 2017). Another possibility is that, given the ubi-
quity of cars in the modern world, people have more experience with
cars as compared with other object domains. If experience was re-
sponsible (or partially responsible as it is likely more than one ex-
planation could apply) for the “specialness” of car recognition, then
independence of car recognition should be modulated by HPD. Thus,
we predict that in a lower density hometown sample, both face and car
recognition will be more strongly correlated with other domains than in
a higher density hometown sample. This prediction assumes people
from low-density hometowns encounter fewer cars than those from
high-density hometowns given that a less dense population would
imply fewer cars in the visual environment. It is of course possible that
this may not be the case given that visual experience with cars can
occur not only through in-person interactions but also through per-
ception of images on the Internet, television, magazines, etc. This is also
true of faces, however, and given the results from Balas and Saville
(2015), we assume that people who live in less dense towns encounter
fewer people on a daily basis than those from more dense towns,
leading to relatively less experience with faces and cars. Balas and
Saville (2015) found a significant difference between face- and chair-
evoked N170 amplitudes in their large hometown group but no dif-
ference in the small hometown group (although the interaction was not
significant), suggesting that face recognition is more distinct from ob-
ject recognition in those from more dense hometowns than those from
less dense hometowns (Balas & Saville, 2015). Therefore we have two
main hypotheses: (1) we will replicate the previous finding that people
from high density hometowns perform better on a face recognition
measures – and (2) face and car recognition will correlate more strongly
with the recognition of other categories for our low-density hometown
sample than our high-density hometown sample. As an extension, we
ask whether this finding of better recognition in people from high
density hometowns generalizes to a non-learning face task or to
learning non-face tasks.

1. Methods

1.1. Subjects

A total of 172 subjects were recruited using flyers placed around the
University of Nebraska – Lincoln campus. Many UNL students are in-
state and come from towns just outside of Lincoln or Omaha. Subjects
were compensated $37.50 ($15/h) for completing all tests and all work
was conducted under the approval of both Vanderbilt and UNL
Institutional Review Boards and was conducted in accordance with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki). Informed consent was obtained from all subjects. Of these
172 subjects, 111 reported their hometown zipcode in a follow-up
email (as we determined in preliminary stages of analyses that home-
town population size and self-reported hometown size were not good
predictors of population density, and reasoned that population density
is likely more relevant than is hometown population to day-to-day ex-
perience with faces and cars). From hometown zipcodes, population
density could be determined from www.unitedstateszipcodes.org. One
subject was excluded because of below or near chance performance
levels (range 0.21–0.38) on all recognition tasks, leaving 110 subjects.

1.2. Procedure

Subjects completed all of the following tests through an online
website. Total, the tests took approximately 2.5 h to complete and
subjects were given a week to complete the tests, in a single order:
SVET- Bird, SVET-Mushroom, SVET-Car, SVET-Plane, VET- Bird, VET-
Mushroom, VET-Car, VET-Plane, CFMT, VFMT and CCMT.

1.2.1. Semantic Vanderbilt Expertise Tests (SVETs)
The SVET is designed to measure semantic knowledge about a

particular domain. For 48 trials (with 3 catch trials), subjects choose the
real subordinate-level label among two plausible distractor labels (Van
Gulick et al., 2016). For example, subjects must choose the option
displaying the text “Evening Grosbeak” as the correct bird label, instead
of “Dakota Raven” or “Antietam.” Here we used the SVET for birds,
mushrooms, planes and cars to provide measures of semantic knowl-
edge to accompany every VET. This task takes approximately five
minutes to complete.

1.2.2. Vanderbilt Expertise Tests (VETs)
The Vanderbilt Expertise Tests were developed to measure object

recognition for several domains using a learning-exemplar task similar
to that used in the CFMT (McGugin et al., 2012). Thus, subjects study
six exemplars at the beginning of each VET for 20 s and then complete
an initial 12 three-alternative forced-choice trials (See Fig. 1). On each
trial, subjects have to determine which of three items is identical to one
of the six previously studied objects. Following the first six trials, there
is a further 20-s study period, after which subjects complete 36 trials
where the correct response is not an identical image to the image of
studied exemplar (so no image matching is possible). Feedback is pro-
vided on the first 12 trials but not the later 36. Our subjects completed
VETs for birds, planes, cars, and mushrooms to provide both living and
non-living domains. Responses were un-speeded and each VET for a
single domain takes approximately 10min to complete.

1.2.3. Cambridge Face Memory Test (CFMT)
The CFMT was designed as a measure of face recognition ability

(Duchaine & Nakayama, 2006). Subjects begin by studying six Cauca-
sian male grayscale faces and then complete three-alternative forced
choice trials to distinguish the target faces from two distractors (Fig. 1).
On the first 18 trials, faces are presented with viewpoints that are
identical to the studied viewpoint, followed by 30 trials in which the
faces vary in viewpoint and lighting, and then 24 trials in which
Gaussian noise is added to the images (bottom right image in Fig. 1).
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Here, we used the longer CFMT (Russell et al., 2009), which includes 30
additional difficult trials at the end of the test in which more Gaussian
noise is added to the images. Subjects studied the target faces between
each block and responses were un-speeded. The test takes approxi-
mately 15min to complete.

1.2.4. Cambridge Car Memory Test (CCMT)
The CCMT was designed to measure car recognition ability using the

same task used in the CFMT (Dennett et al., 2012). Because of limita-
tions of the online website we used to record responses, we had to
modify the presentation of stimuli from the original presentation format
(three cars staggered along a diagonal from upper left to bottom right)
to a new format in which we presented the three car options vertically
centered and stacked. Unfortunately, we discovered that some subjects
misinterpreted the instructions and we could not reliably determine
from the responses collected which subjects were properly responding
and which were incorrectly responding. Thus, we did not include the
CCMT in any of our analyses.

1.2.5. Vanderbilt Face Matching Test (VFMT)
The VFMT was created to measure face recognition ability using a

different task from that used in the CFMT, CCMT and VETs (Sunday,
Lee, & Gauthier, 2018). In contrast to these tests, the VFMT does not
require learning about a small set of faces over a series of trials, but
instead only requires short-term visual memory to match face identity
on a new set of faces on each trial. We included the VFMT as another
measure of face recognition ability that uses a different task from that
used by the CFMT. This inclusion allows us to determine whether the
hometown-related effects found in Balas and Saville (2015) generalize
to all tests that tap into face recognition ability or are specific to the
learning exemplar CFMT task. Each of the 95 trials uses a new set of 5
face images of either male or female Caucasian faces (same within a
trial). Subjects study two faces for four seconds and then in a test dis-
play, they must choose which of three faces matches one of the two
studied faces (Fig. 2). Subjects are instructed to match identity and not
image, since the studied and correct responses target faces are different
images of the same individual. Feedback is provided only on the
practice trials and first three test trials. Face genders were interleaved
to reduce proactive interference and responses were unspeeded. The
VFMT takes approximately 15min to complete.

1.2.6. Self-reported expertise
Subjects were also asked to report their experience with each do-

main (bird, mushrooms, planes, and cars) on a Likert scale from 1 to 9
using the general statement: Please rate your expertise with {domain}.
By expertise we mean your experience with, interest in, and knowledge
about items in this category, relative to other people. Subjects also rated
their general interest in object recognition through a series of four
questions rating from 1 to 7: (1) their interest in classifying objects in
their various sub-categories, (2) how easily they learn to recognize
objects visually, (3) how much of their time at work or school involves
recognizing things visually, and (4) how much of their free time in-
volves recognizing things visually (Van Gulick et al., 2016).

1.2.7. Self-reported hometown size and zipcodes
Subjects answered the question “How would you classify the place

you consider your hometown?” on a scale from 1 to 5 (1: very small
town (population less than 1000), 2: small town (population greater
than 1000 but less than 30,000), 3: small city (population greater than
30,000 but less than 250,000), 4: large city (population greater than
250,000 but less than 1 million), 5: major metropolitan area (popula-
tion greater than 1 million)). We chose 1000 and 30,000 as our cutoffs
because they are the cutoffs used in Balas and Saville (2015). To get a
more continuous estimate of hometown size, we asked subjects to re-
port their hometown zipcode in a follow-up email (111 out of 172 re-
sponded). We obtained population and population density (people per
square mile) values for each of these zipcodes from www.
unitedstateszipcodes.org. These population and population density va-
lues are derived from multiple sources, including the U.S. Postal Ser-
vice, U.S. Census Bureau, Yahoo, Google, FedEx and UPS. We did not
ask our subjects to report the exact years during which they lived in the
reported hometown, however, meaning that these population values
may not exactly correspond to when the subjects lived in their home-
towns.

When comparing performance across groups, in addition to NHST
results, we provide Bayes Factor (evidence favoring better performance
in the high than low population group) and Bayesian estimation of the
effect size in the form of the 95% highest density interval (95% HDI)
using the BEST program (Kruschke, 2013), computed using the pro-
gram’s default normal prior, which has been shown to have minimal
impact on the posterior distribution. BEST uses an MCMC algorithm to

Fig. 1. Example Stimuli from the VETs and the CFMT. Top row from left to right; mushrooms, planes and birds. Bottom row from left to right; car, CFMT stimuli,
CFMT stimuli with noise added.

M.A. Sunday et al. Vision Research 157 (2019) 202–212

204

http://www.unitedstateszipcodes.org
http://www.unitedstateszipcodes.org


generate the posterior distribution, and we used a chain length of
100,000. When zero does not fall in the 95% HDI, it indicates a credible
difference.

2. Results

Face recognition ability changes over a lifespan, though this ability
remains relatively stable across ages 18–50 (Germine, Duchaine, &
Nakayama, 2011). Thus, to limit age-related variance, we excluded
subjects over the age of 50 (3 subjects), leaving a total of 107 subjects
(30 male; mean age=25.0 years, range= 19–49; 85.0% were Cauca-
sian, 7.5% Asian, 2.8% Hispanic/Latino, 1.9% African-American, 0.9%
other and 1.9% Middle Eastern) in the analyses. Within these 107
subjects, CFMT scores showed no correlation with age (r107=−0.09,
p= .38).

While Balas and Saville (2015) categorically compared two groups
of subjects for whom they did not obtain the exact hometown size
(Small hometown group self-reported hometown populations< 1000;
Large hometown group self-reported hometown populations>
30,000), our more continuous measure affords us the opportunity to
examine subjects from a total 72 different hometown zipcodes. Con-
sidering the relation between reported hometown size and population
density derived from zipcodes, we find that while hometowns of size
less than 1000 (Hometown 1) do show smaller zipcode population
density, there is considerable overlap among the other four groups
(Fig. 3). We reasoned that population density was the variable more
relevant to daily experience with faces, thus we grouped our subjects
based on population density. Because our population densities ranged
from 2 to 34,190, we log-transformed the density measure using base
10, although we report raw un-transformed values in the text and

Fig. 2. Example VFMT trial. Subjects studied the two top panel faces for four seconds and then choose which of the three following faces were one of the two studied
faces. The correct response is indicated by the asterisks.

Fig. 3. Dot plot showing population density distributions for each self-reported
hometown size.
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Table 1 for clarity.
Balas & Saville had a small hometown group from towns of less than

10 people per square mile and a large hometown group from a town of
around 85 people per square mile (Balas & Saville, 2015). To compare
our results to theirs, we created three groups: Small HPD (population
density≤ 10 ppl/mi2); Medium HPD (10 < population den-
sity≤ 85 ppl/mi2); Large HPD (population density > 85 ppl/mi2). We
chose 85 ppl/mi2 as a cutoff point because it approximates the average
population density of the entire United States (87.4 ppl/mi2; Balas &
Saville, 2015) and falls within a gap between our largest medium po-
pulation density (77 ppl/mi2) and smallest large population density
(159 ppl/mi2). Two of our subjects reported hometown sizes of less than
1000 but had zipcode population densities that would place them in the
medium group (log population densities of 12 and 75) were included in
the small hometown group based on Fig. 3. The demographics for each
group are reported in Table 1.

Our small and large density groups correspond well to those groups
in the Balas & Saville study, but it was not clear what to predict for our
medium density group (i.e. whether we should expect a linear effect, or
whether there is a point at which population density reaches a ceiling in
its effects). In examining the average accuracies for the CFMT-long with
the three groups (small: M=57.1%, SD=11.9%; medium:
M=58.1%, SD=10.7%; large: M=63.1%, SD=10.2%), we noted
the small vs. large group difference consistent with Balas and Saville
(2015), with the medium group very similar in accuracy and variance
relative to the small density group. Thus, to increase the power of our
analyses, we combined the small and medium groups into one group
(now called “low”) for comparison with those from places with a large
population density (“high”). These two groups had roughly similar
demographics (low: N=23, mean age= 27.7, SD age= 9.6, 74% fe-
male, 87% Caucasian, mean population density= 27.2 ppl/mi2, SD
population density= 24.4 ppl/mi2; high: N=84, mean age= 24.3, SD
age= 5.6, 71% female, 85% Caucasian, mean population den-
sity= 3142.1 ppl/mi2, SD population density= 5166.7 ppl/mi2).

Analyses of the patterns of mean performances: Will the small hometown
sample show lower performance on the CFMT, as in Balas and Saville
(2015)? Will this extend to another test of face recognition or to other
learning tests with non-face categories?

For all analyses, no quantitative difference was observed between
the short 72-trial CFMT version used in Balas and Saville (2015) and the
extended score. Because the longer version is more sensitive to high
range performance, from now on we report only this version, which we
will call CFMT. Accuracies for each recognition test separated by group
are shown in Fig. 4.

Because of the difference in sample size, we tested for equality of
variance between groups for each test, using Levene’s test. The high
group had higher variance than the low group on the VET-Bird
(F= 5.11, p= .026) so for that test we used a Welch test to adjust
degrees of freedom. None of the other tests showed significant evidence
of unequal variance (p’s > 0.25).

The only significant difference between low and high group average
accuracies was found for CFMT-scores (two-tailed t(105)= 2.25,
p=0.03, d=−0.52, one tail BF: 3.87; 95% HDI: 0.002, 0.110, Fig. 4).
Indeed, both the long and short CFMT scores show a significant dif-
ference between hometown groups, and thus test-level difficulty does

not seem to modulate the observed effect (average performance for the
CFMT short form was 71.6 (0.12) was 62.0 (0.11) for the long form). t-
Tests and Bayesian estimates qualitatively agreed for all tests: for all the
other tests (t-tests and Welch test for birds), p-values were large
(p > .4), BFs favored the null hypothesis and the 95%HDI included 0.

Following Richler et al (2017), we aggregated the four VET scores to
produce one total VET score that can be used as an estimate of general
object recognition ability. This aggregation is useful since experience
and interest in different VET categories do not correlate across cate-
gories (Richler et al., 2017). We then ran a 2 (hometown groups)× 3
(VET, VFMT, CFMT) ANOVA in which neither the main effect of group
F(1,105)= 2.57, p= .11, ηp2=0.02, nor the group× category inter-
action, F(2,210)= 1.77, p= .17, ηp2=0.02, was significant.1

Thus, we replicate the effect of HPD on CFMT, but we may lack the
power to show that this this effect is larger than that for non-face
learning tests or a non-learning face recognition task. We performed a
power calculation specifying the same group ratios as in the present
study and found that to detect the present interaction with 80% power,
a sample size 2.6 times as large (278 subjects) would be required.2

We provide the full set of first-order correlations for the entire
sample here (Table 2), to provide evidence that speaks to the con-
vergent and discriminant validity of the various measures. As expected,
because they are the only two tests in the same domain, the two face
measures (CFMT and VFMT) showed the strongest correlation
(r107= 0.67, p < .001). Overall, the correlations that involved a face
test or the VET-Car were lower (ranging from 0.28 to 0.48) than the
correlations among the other categories (plane/bird/mushroom, ran-
ging from 0.56 to 0.61). This is consistent with face and car recognition
being relatively “specialized” abilities and this issue is addressed spe-
cifically under Section 2, “Analyses of the patterns of correlations as a
function of hometown population density”.

Each VET correlated significantly with the SVET from its respective
domain (Table 3, Birds: r107= 0.38, p < .001; Mushrooms:
r107= 0.23, p= .02; Planes: r107= 0.24, p= .01; Cars: r107= 0.40,
p < .001). As in prior work (Van Gulick et al., 2016)—and indicative
of good validity of the tests as measures of specific experience with
various categories—all but the VET-Mush/SVET-Mush (r107= 0.18,
p= .13) within-domain correlations remained significant after regres-
sing out the averaged other domains (e.g. VET-Bird scores after the
averaged VET-Mush, VET-Plane and VET-Car score is partialed out;
Appendix, Table 2, r’s107 > 0.21, p’s < .03)

Within-domain VETs and relevant self-reported experience showed
small correlations, consistent with prior work demonstrating that
people are not very good at predicting their recognition performance
relative to other people (Van Gulick et al., 2016, see Appendix,
Table 1). Correlations between recognition tests and average self-re-
ported general object recognition interest and experience were also
small but consistent (Mean r107= 0.09, range r=−0.07–0.16).

Population density did not correlate with performance on any of our
tests (all r107 < 0.15, p’s > .13). Adding a quadratic trend for log
population density to the linear effect did not substantially improve the
fit (R2 goes from 0.15 to 0.18 for the CFMT, the measure that showed
the strongest numerical increase, Fig. 5).

Analyses of the patterns of correlations as a function of hometown po-
pulation density: Are face and car recognition abilities more strongly related
to other kinds of object recognition in a small hometown sample as compared
with a large hometown sample?

This second set of analyses concerns not the mean performance on

Table 1
Demographics for small, medium and large hometown groups.

Hometown
Group

N Mean Age
(SD)

Percent
female

Percent
Caucasian

Mean Pop.
Density (SD)

Small 10 26.7 (3.8) 80% 80% 13.30 (21.9)
Medium 13 28.4

(10.4)
69% 92% 37.9 (21.1)

Large 84 24.3 (5.6) 71% 85% 3142.1
(5166.7)

1 There was a significant effect of Category, F(2,210)= 4.04, p= .02, which
we do not interpret because the different tests were not meant to be equated in
difficulty, so only within-tests effects or interactions were of interest.
2 Note that such power calculations, based on a 95% confidence interval

around the noncentrality parameter, are relatively imprecise (Taylor & Muller,
1996).
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each test, but whether we can find evidence that in the absence of early
experience with a large number of faces and cars, as represented by
HPD, face and car recognition is more strongly related to other kinds of
object recognition. That is, we already know that in large samples for
which HPD is not controlled (but is presumed to be relatively large),
performance with faces and with cars shows correlations with object
recognition for other categories that are lower than average. Here, we
examine whether this effect is stronger in high than low HPD groups,
for each individual face and car test.

We performed three separate sets of analyses that focused on the
relations among bird, mushroom, and plane recognition and the CFMT,
VFMT, and VET-Car recognition measures, respectively. Thus, each
analysis involved the correlations among a set of four variables, each
assessed within the high and low HPD groups. Below, for the sake of
brevity, we state our hypotheses in terms of face recognition (applying
to the CFMT and VFMT), but the logic is parallel for cars (VET-Car). Our
hypotheses can be framed in terms of the relative magnitude of corre-
lations involving birds, mushrooms, and planes. We predicted that (see
Table 4): (1) Of all the correlations involving birds in the high- and low-
density groups (e.g., bird-mushroom-high, bird-plane-high, bird-face-
high, bird-mushroom-low) the lowest correlation would be that be-
tween birds and faces in the high density group; (2) Of all the corre-

lations involving mushrooms in the high- and low-density groups the
lowest correlation would be that between mushrooms and faces in the
high-density group; and, (3) Of all the correlations involving planes in
the high- and low-density groups the lowest correlation would be that
between planes and faces in the high-density group. Thus, within each
of the three non-face categories, our hypotheses imposed five inequality
constraints. For example, in the case of birds, the correlations for each
of the five members of the set bird-mushroom-high, bird-plane-high,
bird-mushroom-low, bird-plane-low, and bird-face-low would be

Fig. 4. Bar graph of average accuracies for low and high hometown groups. Error bars show 95% confidence intervals.

Table 2
Correlations between each test are shown in the lower left corner with the
Cronbach alpha reliability shown along the diagonal (italicized). Dis-attenuated
correlations are reported in the upper right corner. r > 0.31 are significant at
alpha= 0.001; r > 0.24 are significant at α=0.01; r > 0.18 are significant
at α=0.05.

VET-Bird VET-Mush VET-Plane VET-Car VFMT CFMT

VET-Bird α=0.85 0.61 0.61 0.44 0.48 0.48
VET-Mush 0.45 α=0.64 0.56 0.28 0.31 0.30
VET-Plane 0.51 0.41 α=0.82 0.39 0.35 0.35
VET-Car 0.35 0.19 0.30 α=0.74 0.48 0.44
VFMT 0.38 0.22 0.31 0.35 α=0.74 0.84
CFMT 0.41 0.22 0.29 0.35 0.67 α=0.85

Table 3
Correlations between VETs and SVETs for the 107 subjects. Cronbach alpha values are shown along the diagonal (italicized) and disattenuated correlations are
reported in the upper right corner. r > 0.31 are significant at alpha= 0.001; r > 0.24 are significant at α=0.01; r > 0.18 are significant at α=0.05. Within-
domain correlations are bolded.

VET-Bird VET-Mush VET-Car VET-Plane SVET-Bird SVET-Mush SVET-Car SVET-Plane

VET-Bird a= 0.85 0.61 0.44 0.61 0.58 0.43 0.23 0.23
VET-Mush 0.45 a= 0.64 0.28 0.56 0.18 0.40 0.16 0.08
VET-Car 0.35 0.19 a= 0.74 0.39 0.33 0.21 0.51 0.01
VET-Plane 0.51 0.41 0.30 a= 0.82 0.30 0.33 0.24 0.32
SVET-Bird 0.38 0.10 0.20 0.19 a= 0.50 0.45 0.36 0.03
SVET-Mush 0.29 0.23 0.13 0.22 0.23 a= 0.52 0.30 0.43
SVET-Car 0.19 0.12 0.40 0.20 0.23 0.20 a= 0.82 0.48
SVET-Plane 0.17 0.05 0.01 0.24 0.02 0.26 0.36 a= 0.67
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greater than the correlation between bird and faces in the high-density
group. Thus, across birds, mushrooms, and planes there were 15 in-
equality constraints in all. We should note that we did not specify any
specific pattern of inequalities among pairs of correlations that: (1) Did
not involve faces (e.g., there were no inequality constraints on the re-
lation between bird-mushroom-high, bird-plane-high, bird-mushroom-
low, and bird-plane-low); (2) Only involved faces within a given density
group (e.g., our hypotheses did not constrain the relative magnitude of
bird-face-low and mushroom-face-low); and (3) Had no stimuli in
common (e.g., the bird-mushroom and plane-face correlations within or
across density groups).3 Based on our prior findings, our predictions

here were strongest for the CFMT and VET-Car, as these tests have been
used in combination with tests for several other object categories (e.g.,
VET battery for birds, mushrooms, planes, motorcycles…) in prior
studies with large samples (unscreened for hometown size) and have
repeatedly shown lower than average correlations (McGugin et al.,
2012; Van Gulick et al., 2016). In contrast, the VFMT has not been used
yet in that context. The VFMT has been found to correlate well with the
CFMT (Sunday et al., 2018) which could lead to the prediction that
performance with the VFMT becomes more independent from object
recognition with experience. Our results from the above analysis sug-
gest that the VFMT is less sensitive to experience than the CFMT as it
relates to mean performance.

In addition to an analysis that combined both groups, we were in-
terested in testing our hypotheses focusing only on the high population
density group. In this group, we predicted that (see Table 4, bold
constraints): (1) The bird-face correlation would be lower than both the
bird-mushroom and bird-plane correlations; (2) The mushroom-face
correlation would be lower than both the bird-mushroom and mush-
room-plane correlations; and, (3) The plane-face correlation would be
lower than both the bird-plane and mushroom-plane correlations. Thus,
six constraints in all were imposed within the high-density group. Al-
though we did not hypothesize the same effect in the low-density group,
for comparative purposes we also assessed the strength of the evidence
for this group. The logic of our predictions for cars again directly par-
alleled that just described for both face tests (i.e., the smallest corre-
lations would be the three involving cars within the high-density
group).

Note that the hypotheses across both groups and within the high-
density group consist of sets of ordinal (i.e., inequality) constraints among
pairs of correlations. Each constraint specifies that a given correlation is

Fig. 5. Scatterplots of recognition test scores versus log of the population density with quadratic fits in red.

Table 4
The 15 inequality constraints included in the combined groups hypothesis. The
6 constraints in bold are those that form the within group (here, High Density)
hypothesis. Here, face could denote either CFMT or VFMT scores, or it would be
replaced by the VET-Car. H and L denote the high and low population density
groups.

r(H bird,face) < r(H bird,mush)
r(H bird,face) < r(H bird,plane)
r(H bird,face) < r(L bird,face)
r(H bird,face) < r(L bird,mush)
r(H bird,face) < r(L bird,plane)
r(H mush,face) < r(H mush,bird)
r(H mush,face) < r(H mush,plane)
r(H mush,face) < r(L mush,face)
r(H mush,face) < r(L mush,bird)
r(H mush,face) < r(L mush,plane)
r(H plane,face) < r(H plane,bird)
r(H plane,face) < r(H plane,mush)
r(H plane,face) < r(L plane,face)
r(H plane,face) < r(L plane,bird)
r(H plane,face) < r(L plane,mush)

3When we imposed additional constraints that also included these correla-
tions (e.g., r between bird and mushroom> r between plane and face) the

(footnote continued)
pattern of results was very similar to those reported below and conclusions
about magnitude of effects were identical.
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less than another correlation. Although one-tailed tests are commonly
used to test a single inequality constraint considered in isolation, it is
difficult to test sets of ordinal constraints using traditional statistical
methods. Such predictions can, however, be tested using a Bayesian
order-constrained hypothesis testing (BOHT) approach (e.g., Hoijtink,
Klugkist, & Boelen, 2008; Klugkist, Laudy, & Hoijinkk, 2005;
Kluytmans, Van De Schoot, Mulder, & Hoijtink, 2012; Mulder, 2014,
2016). We used the analytic framework and software program BOCORR
developed by Mulder (2016) for testing order-constrained hypotheses
on correlations. This approach allowed us to test the two sets of com-
posite hypotheses as a whole, rather than relying on tests of individual
pairs of correlations, one by one. In addition to allowing a more direct
test of our hypotheses than a piecemeal approach, the BOHT approach
had two additional advantages: (1) It does not require the multiplicity
corrections necessitated when testing a large number of differences
between pairs of correlations (e.g., Boelen & Hoijtink, 2008; Hoijtink,
Huntjens, Reijntes, Kuiper & Boelen, 2008); and, (2) It yields Bayes
factors (BFs) that allowed us to quantify the degree of support for our
hypotheses rather than relying on a series of reject/no-reject decisions.

Because of the complexity of the BOHT approach, we emphasize a
more intuitive than mathematically rigorous description and refer
readers interested in a more technical description to Mulder (2016) and
the other sources cited above. Consider our predictions that span both
density groups. Consider the 15 inequality constraints shown in Table 4
as the null hypothesis (H0). Although some applications of BOHT in-
volve multiple competing hypotheses of interest, in our case we simply
compared H0 to its alternative (Ha), that is, any admissible pattern of
correlations other than that specified by the null hypothesis. When
predictions were tested within the high-density group alone, H0 speci-
fied six inequality constraints. Correspondingly HA was any possible
pattern of correlations in the high-density group other than those that
would be consistent with H0.

In both cases, the overriding goal was to compute BFs that quantify
the degree of evidence in the data for H0 relative to HA. Before these BFs
would be computed, it was first necessary to compute the BF for a given
H0 relative to what is known as the unconstrained, encompassing
model, denoted as Hu (e.g., Berger & Mortera, 1999; Klugkist &
Hoijtink, 2007; Klugkist et al. 2005). This model imposes no ordinal
constraints on the pattern of correlations but does specify an encom-
passing prior distribution that was designed to be a reasonable model of
the multivariate distribution of correlations. We specified a joint prior
for the unstructured correlation matrix that resulted in beta ( , )1

2
1
2 dis-

tributions on the interval (−1,1) for the marginal priors of the separate
correlations. Relative to alternative priors, this specification has been
shown to enhance the sensitivity to detect a valid set of order con-
straints on correlations (Mulder, 2016).

To compute the BF comparing H0 to HU it was first necessary to
compute both the prior and posterior probabilities that H0 is correct.
The prior probability that H0 is correct does not incorporate the actual
data collected. It is simply the proportion of outcomes under the en-
compassing prior that is consistent with the restrictions. To choose a
simple example, if a single order constraint was being tested specifying
that the difference between two correlations was greater than 0, the
prior probability of H0 would be .50 because half of all possible values
of the two correlations would be consistent with this constraint. As the
number of constraints within a set increase, the proportion of the total
correlation space that is consistent with the complete set of restrictions
becomes smaller and smaller. After observing the data, the prior dis-
tribution is updated using Bayes’ theorem and the posterior probability
of H0 is computed. If the data are consistent with the restrictions, the
posterior probability of H0 is larger than the prior probability of H0;
that is, the average probability density within the restricted space de-
marcated by Ho has increased.

These computations are generally analytically intractable. For this
reason, using BOCORR (Mulder, 2016), both the prior and posterior

probabilities were calculated by generating a large number of samples
from the prior and posterior distributions and counting the proportion
of samples that were consistent with the restrictions. To test the more
complex models that included both the high- and low-density groups,
we drew 10,000,000 samples and for the within-group analyses we
drew 1,000,000 samples. In each case, we then computed the BF for Ho

relative to Hu as the ratio of the posterior probability of Ho to the prior
probability of Ho. BFs > 1 indicate that, consideration of the actual
data increased the probability of Ho while BFs < 1 indicated that the
observed data decreased the probability of Ho. Because the set of out-
comes represented by H0 and HA are mutually exclusive, prior and
posterior probabilities for HA were simply 1 – the corresponding
probabilities for H0. In turn, these probabilities were used to compute
the BF for HA relative to HU.

Although the BF for Ho relative to Hu was of interest, our primary
goal was to compute a BF indicating the relative strength of the evi-
dence for Ho relative to its alternative, HA. It can be shown that this
quantity is the simple ratio of the BF for Ho relative to HU and the BF for
HA relative to HU; that is, =BFH ,H

BF
BF0 A

H0,HU
HA,HU

. In interpreting BFH ,H0 A, we

used Jeffreys’ (1961) guidelines according to which BFs between 3 and
10, between 10 and 30, and between 30 and 100 offered, respectively,
substantial, strong, and very strong support for the target hypothesis
relative to its alternative. Although Jeffreys considered BFs between 1
and 3 barely worthy of mention, we favor the descriptor ‘only marginal’
support. When BFs are less than 1 and appear to favor Ha, the re-
ciprocals of the ranges noted above provide descriptors for the strength
of evidence. These descriptors facilitate communication but are essen-
tially rough guidelines.

From a conceptual perspective, there are two critical features con-
cerning the interpretation of BFH H, A0 that should be emphasized. First,
like all Bayes factors, it indicates the proportional change in the relative
probability (i.e., the odds) of the null and alternative hypotheses
brought about by consideration of the actual data (e.g., Lavine &
Schervish, 1999). Thus, even if a given H0 has low a priori probability
because it limits the set of possible correlations nested under it, it can
be associated with a high BF relative to its alternative if the data are
highly consistent with it: The data have markedly changed the relative
probability of the two hypotheses. The second essential feature is that
BFs can be considered the ratio of model fit to model complexity (e.g.,
Kluytmans et al., 2012). Prior probabilities are linked to model com-
plexity. In this context, complexity is inversely related to precision and
specificity: Less complex models make more precise and restrictive
predictions and thus have lower prior probabilities. On the other hand,
the better the fit of the data to the model, the higher the posterior
probability. Because a BF is the ratio of posterior to prior probabilities,
they will especially favor models that fit well despite being highly re-
strictive. That is, at equivalent levels of complexity, the higher the fit
the higher the BF and at equivalent levels of fit, the less complex (i.e.,
more restrictive) the model the higher the BF. Finally, we note that: (1)
BFs take into account sample size; (2) There is evidence that a Bayesian
approach to the analysis of correlations has better properties than fre-
quentist approaches when ns are relatively small (e.g., as was the case
in the low-density group; Fosdick & Raftery, 2012); and, (3) The
BOCOR program can accommodate both within-group and across-group
predictions (Mulder, 2016).

Table 5 shows the correlations within the high- and low-density
groups for each of three measures of interest (CMFT, VFMT, and VET-
Car) and Table 6 shows BFs for both the combined groups and within-
group analyses. Recall that our predictions applied to both the com-
bined groups and within-high density analyses, with the low-density
analyses included for comparative purposes. In addition, our predic-
tions were strongest for CFMT and cars. We first consider the hy-
potheses that involved the pattern of correlations across both home-
town groups. The CFMT analyses provided strong support for our
predictions. An examination of the correlations in Table 5 show that the
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three lowest correlations among faces (as assessed by the CFMT), birds,
mushrooms, and planes were the three correlations involving faces
within the high-density group. Consistent with this observation, the BF
for the combined group indicated strong support for hypotheses
(BF= 22.91). In contrast the BOHT analysis performed on the VFMT
showed only marginal support the target hypothesis (BF=2.36). The
BF for VET-Car indicated “substantial” support for the target hypothesis
based on Jeffreys’ (1961) criteria.

Examination of the correlation matrices indicated that correlations
for the low-density group were generally higher than those for the high-
density group, especially on the CFMT. Tests of the equality of corre-
lation matrices (Steiger, 1980) conducted for the three 4-variable sets
(CMFT-bird-mushroom-car, VFMT-bird-mushroom-car, and VET-car-
bird-mushroom-car) indicated significant differences on the matrix that
included CFMT scores, = <χ p16.45, . 02,6

2 but no significant differ-
ences on the matrices that included VFMT and VET-Car scores,

= >χ p7.34, . 25,6
2 and = >χ p6.33, . 35,6

2 respectively.
Although there were also no significant differences on tests of the

equality of covariance matrices, all Box M (Morrison, 1976) p’s > .20,
the overall differences in magnitude evident on the CFMT correlation
matrices could themselves in part account for the high BF for the cross-
groups analysis. Thus, for this variable in particular we deemed the
separate within-high and within-low density analyses particularly de-
terminant. On the CFMT measure, the BOHT analysis of the high-den-
sity group indicated strong support for the target hypothesis
(BF= 15.87). In sharp contrast, if anything, the correlations involving
the CFMT in the low-density group indicated that consideration of the
actual data yielded increased support for the alternative relative to the
null hypothesis (BF=0.11). Two of the six target correlations were in
the hypothesized direction within the low-density group but four of six
were in the opposite direction. For both the VFMT and VET-Car

analyses, the strength of the evidence for the target hypothesis within
the high-density group was in the “substantial” range, with the mag-
nitude for cars midway between that of the CFMT and VFMT
(BFs= 4.67 and 9.07, respectively for VFMT and cars). On both mea-
sures, BFs within the low-density group were only marginal (BFs= 1.97
and 1.77, respectively for VFMT and VET-Car).

In sum, Bayesian tests of order-constrained hypotheses that speci-
fically addressed the prediction that faces and cars are more in-
dependent from object recognition in the high than in the low HPD
group found strong and substantial support, respectively, for the CFMT
and the VET-Car, but only marginal support for the VFMT. These results
offer the first evidence in support of any hypothesis for why face re-
cognition (and car recognition) may be “special”. Interestingly, our
analyses that addressed patterns of correlations among abilities are
independent from those addressing mean patterns of performance, in
both cases we find that the VFMT did not show the same sensitivity to
HPD as the CFMT. This illustrates how variance on any one test includes
both aspects that tap into a construct of interest (here, face recognition
ability) as well as more test-specific components. We speculate that the
CFMT format measures a face-learning component that is not as im-
portant in the VFMT where each trial is independent, but future work
could test this hypothesis with a number of different face recognition
tests designed to tap or not into such a process. Interestingly, we find no
evidence that the CFMT and VFMT are any less related in one group
than the other (Low-density group: r= 0.68, High-density group:
r= 0.66).

3. Discussion

First, we compared mean performance on a number of tests of face
and object recognition in people who came from hometowns with re-
latively low vs. high population density. We replicated a relative dis-
advantage on the CFMT for people from low population density
hometowns. While this effect has been reported twice (Balas and
Saville, 2015, 2017), we extend it in a few ways. The original two
studies were conducted in undergraduates in North Dakota who came
from small (less than 1000) or large (> 30,000) hometowns. Here, we
did not restrict on hometown size, and after collecting information on
both hometown size and hometown zipcode, used HPD measured di-
rectly to consider hometown experience on a more continuous basis.
Accordingly, we were able to determine that those coming from the
untested intermediate range of population density in the original study
(those from hometowns with population densities between 10 and 85
per square mile) showed results on the CFMT similar to those from the
smaller hometowns. In addition, the Balas & Saville studies tested only
undergraduates, between 18 and 24. We tested subjects in a much
wider age range (19–49, with 37% of our sample older than 24) and
nonetheless replicated the population density effect on CFMT perfor-
mance. While this suggests that later life experiences do not erase the
influence of hometown environment, we did not collect data on current
location population density or how it may have varied through our
subjects’ lives, and we would not exclude that such later experience
could account for meaningful variance in face recognition if it was
measured.

In addition to replicating the effect of HPD on the CFMT, we com-
pared the face learning task to a non-learning face task, and to a battery
of tests of learning various non-face objects. On the one hand, the CFMT
was the only task that showed a significant effect of HPD. On the other
hand, we did not have sufficient power to claim that the effect for CFMT
was larger than the non-significant effects, in the same direction, ob-
served on the other tasks. Our results may suggest that this effect could
be relatively specific to a face-learning task. We speculate that this may
reflect those from small hometowns needing to learn and repeatedly
individuate fewer faces than those from larger hometowns, but the
ubiquity of the internet and television make face-processing skills un-
related to learning more equal between different hometown sizes.

Table 5
Pearson Correlations for the Low/High population density groups (note the
results for birds, mushrooms and planes are repeated in each sub-table, to form
3 sets of correlations used to test 3 sets of order-constrained correlations).

CFMT VET-Bird VET-Mush

VET-Bird 0.76/0.27
VET-Mush 0.54/0.11 0.63/0.37
VET-Plane 0.51/0.20 0.64/0.46 0.36/0.42

VFMT VET-Bird VET-Mush

VET-Bird 0.50/0.34
VET-Mush 0.52/0.12 0.63/0.37
VET-Plane 0.16/0.35 0.64/0.46 0.36/0.42

VET-Car VET-Bird VET-Mush

VET-Bird 0.49/0.30
VET-Mush 0.47/0.09 0.63/0.37
VET-Plane 0.35/0.28 0.64/0.46 0.36/0.42

Table 6
Bayes Factors for Inequality-Constrained Hypotheses for Correlations.

Measure Model

Combined Groups High Density Low Density

CFMT 22.91 15.87 0.11
VFMT 2.36 4.67 1.97
VET-Car 7.91 9.07 1.77

Note: Bayes Factors > 1 indicate greater support for H0, relative to Ha, and
Bayes Factors< 1 indicate greater relative support for Ha. According to
Jeffreys’ (1961) criteria, 3 > BF < 1 indicates only marginal support for H0,
10 > BF > 3 indicates substantial support for H0, and 30 > BF > 10 in-
dicates strong support for H0, while the reciprocals of these ranges indicate
strength of support for Ha.
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Before any strong conclusion is made about whether the effect is
specific to faces and the extent to which it depends on the learning
format of the CFMT, it is clear that a larger sample size, especially in the
low population density group, will be necessary. Future work should
include other tests in which subjects learn faces over trials as in the
CFMT (e.g., the Vanderbilt Face Expertise Tests, Ryan & Gauthier,
2016) with tests that involve less face learning (e.g., ensemble-per-
ception face tasks like Haberman, Brady, & Alvarez, 2015) in samples of
varying hometown populations.

Second, we compared the pattern of correlations among various
abilities in the two hometown groups. Car and face recognition have
been reported to be special abilities that are surprisingly independent of
other object recognition abilities and from each other (McGugin et al.,
2012; Van Gulick et al., 2016; Richler et al., 2017). While no study to
date has offered an explanation for this, one suggestion is that high
levels of experience for both categories—as mediated by population
density—could lead to the development of specialized recognition
mechanisms (Gauthier, in press). Here, using sensitive Bayesian tests of
order-constrained correlations, we found support for the hypothesis
that car and face recognition as measured by learning tests (CFMT and
VET-Car) are more independent from general object recognition in
people who come from large hometowns than in those who come from
much smaller hometowns. The differences in the direction and/or
magnitude of BFs were particularly striking when computed separately
within the high and low population density groups. We found only
meager support for the same pattern when measuring face recognition
ability with the VFMT, despite the fact that the tests are strongly re-
lated. Just as for the effect of population density on mean performance,
it appears that although relatively small, the non-error related, un-
shared variance between the CFMT and VFMT is critical in revealing the
role of experience.

In sum, this work replicates prior findings that people in low po-
pulation density hometowns are poorer at face learning than those in
larger hometowns. It also reveals for the first time that face and car
recognition abilities are not particularly “special” for people who grew
up in small hometowns, while there is much stronger evidence that they
are special for people who grew up in larger hometowns. When only
faces are special, a nativist account may be plausible. The finding that
in terms of individual differences, cars are equally as special made such
account less plausible, and the current results point further in the di-
rection of experience as a driving factor. However, HPD is only an in-
direct measure of experience with faces or cars and we and others
(Balas and Saville, 2015, 2017) did not collect a great deal of in-
formation on other ways these individuals may differ. Future studies
should consider gathering converging evidence from other correlates of
experience, both early and late. Finally, our work shows the importance
of using a multiplicity of measures with different formats to help clarify
the nature of these effects. That is, we have previously cautioned
against strong conclusions based on only two object categories
(Gauthier & Nelson, 2001; Gauthier, in press) and here we add caution
about strong conclusions based on abilities measured using a single test
format.
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