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Abstract

Purpose: Diagnosing breast cancer based on the distribution of calcifications is a visual task and
thus prone to visual biases. We tested whether a recently discovered visual bias that has impli-
cations for breast cancer diagnosis would be present in expert radiologists, thereby validating the
concern of this bias for accurate diagnoses.

Approach: We ran a vision experiment with expert radiologists and untrained observers to test
the presence of visual bias when judging the spread of dots that resembled calcifications and
when judging the spread of line orientations. We calculated visual bias scores for both groups for
both tasks.

Results: Participants overestimated the spread of the dots and the spread of the line orientations.
This bias, referred to as the variability overestimation effect, was of similar magnitudes in both
expert radiologists and untrained observers. Even though the radiologists were better at both
tasks, they were similarly biased compared with the untrained observers.

Conclusions: The results justify the concern of the variability overestimation effect for accurate
diagnoses based on breast calcifications. Specifically, the bias is likely to lead to an increased
number of false-negative results, thereby leading to delayed treatments.
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1 Introduction

Breast cancer is one of the most common forms of cancer among women, with over a quarter of
a million women expected to be diagnosed with breast cancer in 2022. Breast cancer frequency
increases in women beyond age 40, and those over the age of 50 represent 80% of invasive
cases.1 Screening mammography, the best test for early detection of breast cancer, relies on
radiologists correctly detecting the imaging findings of breast cancer—a visual task—and cor-
rectly interpreting those findings as suspicious for cancer—a cognitive task. Either a visual
miss or a cognitive misinterpretation can lead to a false-negative mammographic interpreta-
tion, potentially causing a more advanced stage of disease at the time of eventual diagnosis and
a delay in cancer treatment. False-negative rates for digital mammography and digital breast
tomosynthesis vary in the literature from <1% to 15%.2,3 As a result, considerable effort has
been directed toward improving diagnostic accuracy via technical improvements in mammog-
raphy, including tomosynthesis [three-dimensional (3D) imaging] and innovations in artificial
intelligence to automate diagnosis. Despite these advancements, the task of diagnosing cancer
on mammography is, at its essence, a visual task performed by humans who are under
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considerable demands and time constraints.4 Radiologists make a visual classification of the
density of each patient’s breast tissue and systematically assess for masses, tissue distortion,
and calcifications. As such, any biases inherent in visual perception will be quite likely to also
influence accurate diagnosis. Here, we report the results of a single experiment examining a
visual bias that is likely to impact diagnostic accuracy when radiologists classify the distri-
bution of calcifications.

Calcifications are commonly seen on screening mammography, appearing similar to small
white dots or grains of salt within the breast. The overwhelming majority of calcifications in
breast are benign, but their pattern of distribution can be an indicator of cancer. Certain distri-
bution patterns of calcifications, such as linear (arrayed in a line or branching pattern suggesting
deposition within ducts) and segmental (following the anatomic shape of a breast lobe), have a
high positive predictive value, ∼60%,5 for malignancy. When detected at mammography, these
typically require further evaluation. Other distributions, such as diffuse (randomly distributed
throughout the breast) or regional (within a>2 cm area or more than one quadrant of the breast),
portend a benign diagnosis.6

Identifying and classifying calcifications is challenging for various reasons such as the size of
suspicious calcifications can be small (<0.1 mm7) making them difficult to perceive, differences
in their distribution pattern can be extremely subtle, and technical factors can obscure their
visibility. Once visualized, the crux of the radiologists’ visual task is to determine the calcifi-
cations’ morphology, distribution [see Fig 1(a)], location, and associated findings and then
assign them a level of suspicion for malignancy, or a Breast Imagining-Reporting and Data
System (BI-RADS) category. The BI-RADS is a method used to reduce inconsistencies in
mammographic reports when classifying breast tissue density based on specific categories.8

Fig. 1 Simulated examples of the five categories of calcification distributions on a background of
(a) normal heterogeneously dense fibroglandular breast tissue and (b) examples of our experi-
mental stimuli. In (b), the panels progress from the lowest level of spread (top left) to the highest
level of spread (bottom right).
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The BI-RADS categories include category 0 (incomplete, additional imaging recommended),
category 1 (negative), category 2 (benign lesions), category 3 (probably benign lesion, follow-
up recommended), category 4 (suspicious lesions), and category 5 (highly suspicious lesion).
The distribution of calcifications is a key component of the final BI-RADS category assessment
and can lead to accurate, early breast cancer diagnosis or, conversely, missed diagnoses or
unnecessary biopsy. At its root, this task is akin to determining the spread and elongation of
a distribution of white dots. This exact visual task has been shown to lead to a considerable
bias in perception: clusters of white dots [see Fig 1(b)] are judged to be more diffuse, or spread
out, than their true distribution.9

Characterizing a distribution of calcifications relies on visual processes known as ensemble
perception. Ensemble perception refers to the processes by which the visual system quickly and
efficiently integrates over a group of objects to compress information into one or more summary
statistics, such as the mean or variability. For example, ensemble perception can detect the mean
location, mean color, and mean size of a group of objects.10–12 Most of the research on ensemble
perception has focused on perception of the mean of the group (for review, see Ref. 13), but the
perception of the variability or spread of the group is particularly relevant for the classification
task faced by radiologists given that the visual system can detect the variability of a group of
objects.14

Previously, we found that the perception of variability is considerably biased, with
untrained individuals tending to overestimate the variability of items in a display by as much
as 50% and more in displays with low variability.15–17 In these experiments, student volunteers
from a university introductory psychology course viewed a group of objects that varied along
a single dimension (e.g., line orientation) and were required to judge the variability of this
dimension in the display. In one study, the stimuli were sets of nine lines. Each line in the
set differed in its orientation, and the sets differed from one another in the degree of their
spread. The total spread across the lines was 9 deg for the lowest level of spread and 72 deg
at the highest level of spread. At the lowest level of spread, the lines varied in orientation from
each other by 1 deg for a total set variability of 9 deg, whereas at the highest level of spread,
lines varied in orientation from each other by 8 deg for a total set variability of 72 deg (see
Sec. 2). Each line in a set was presented sequentially, and for each set of lines, participants
made a perceptual estimate of the spread. These judgments were transformed into bias scores
that indicated the percent of overestimation in the spread of the lines. The bias scores were
surprisingly large (∼50%). In other words, participants perceived sets of lines with little spread
as having considerably more spread. This visual bias found with lines is also present with a
variety of other kinds of displays. Follow-up experiments revealed that the bias to overestimate
the spread of a distribution was also found when judging items that varied in either color or
size.16,17 We will refer to the bias to overestimate the variability of a group of objects as the
variability overestimation effect.

Breast cancer diagnoses require accurately classifying the distribution of calcifications, so the
variability overestimation effect has the potential to negatively impact diagnostic accuracy. The
presence of the effect would mean that distributions of calcifications that are more clustered
(potentially suspicious) would be perceived as more regional or diffuse. Regional and diffuse
distributions typically portend a benign diagnosis, so the variability overestimation effect could
lead to an increased number of false-negative diagnoses. It is unclear, however, whether radi-
ologists may be less prone to this bias given their expertise and enhanced training in identifying
calcification distributions. The purpose of the present study is to test whether radiologists are
also prone to the variability overestimation effect when making judgments about stimuli that
resembled calcifications.

Given the possible outcome that radiologists do not show the variability overestimation
effect with stimuli that are similar to calcifications, we also tested whether radiologists would
show the effect in the context of stimuli that are unlike calcifications. The outcomes could be
informative regarding whether expertise protects against the bias in general or only for pre-
viously trained stimuli. We choose to use the aforementioned line orientation task because
the bias has already been demonstrated with this effect in university students and because
the stimuli are unlike calcifications. The line orientation task and the dot task differ in many
ways such as sequential versus simultaneous presentation and the number of objects in the set.
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These differences may be irrelevant: to preface our results, radiologists exhibited a bias to
overestimate variability on both tasks, and the magnitude of the bias was similar to that found
with untrained observers.

2 Method

We assessed variability perception in both expert radiologists and untrained observers in two
tasks. One task required an assessment of the spread of white dots presented simultaneously
on a dark background. The other task required assessing the variability of the orientation of
lines presented sequentially. Whereas dot spread is relevant for diagnosing breast cancer, line
orientation is irrelevant. We tested both tasks to assess whether expertise in one dimension
had differential effects on the variability overestimation effect for relevant versus irrelevant
dimensions.

2.1 Participants

We recruited 20 expert radiologists while they were attending the annual meeting of the
Radiological Society of North America (RSNA). This conference hosts the Medical Image
Perception Lab, which invites vision scientists to conduct research on expert radiologists who
are willing to participate. On average, they had 11.25 years (median = 4, range = 0 to 52 years) of
experience working as radiologists, with five identifying as female and 15 identifying as male.
Only one did their fellowship training on the area of the breast, and 18 indicated that they read
<200 mammograms per year. The percent of clinical time spent in breast imaging ranged from
0% to 35%, with over half the sample indicating that they spend at least some of their clinical
time in breast imaging (see Table 1).

For the untrained observers, 19 participants were recruited and completed the study through a
crowdsourcing platform (Amazon’s Mechanical Turk; MTurk). It is worth noting that 34 started
the study, but 11 incorrectly answered the catch question (see below) and did not finish the study,
and four participants did not complete the experiment. These 15 participants were excluded.

Both groups of participants completed an online task to assess the variability overestimation
effect with dots and with lines. The radiologists completed the task on iPads handed to them at
the conference, and the untrained observers completed the survey on their own devices after
signing up through MTurk. The protocol was deemed exempt by the Colorado State University
Institutional Review Board given that no identifying information was collected, and the research
involved an internet survey. With exempt protocols, informed consent is waived.

Table 1 Overview of clinical time spent on breast imaging for
radiologists in our study.

Percent of time Number of radiologists

35% 1

20% 1

10% 2

5% 5

2% 1

6 ha 1

0% 7

No response 2

aThis radiologist did not specify their answer in terms of a percentage.
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2.2 Stimuli

The stimuli were created in R.18 For the dot task, images of white dots presented at various levels
of spread were presented one at a time [see Fig 1(b)]. The spread of the dots was manipulated
across eight levels ranging from low spread to high spread. Dot placement was determined by
randomly obtaining 10 or 20 samples from a normal distribution with a mean of zero and the
standard deviation (SD) set to one of eight levels ranging from 0.25 to 2. The dots were placed on
a 10 × 10 (arbitrary units) space, corresponding to 600 × 600 pixels. The eight levels of spread
were repeated for nine mean locations based on three lateral positions (left by 1 unit, center, and
right by 1 unit) by three vertical positions (up by 1 unit, middle, and down by 1 unit). Vertical and
lateral deviations were implemented to get participants to focus on spread, rather than a proxy for
spread such as maximum height. There were 144 dot displays (eight levels of spread × two
number of dots × nine mean locations).

For the line task, the stimuli and materials were modeled after prior work.15 Animated GIFs
that showed a sequence of nine lines, presented one at a time, were created. Each set consisted of
nine lines that differed in orientation such that the mean orientation was either 35 deg or 55 deg
and the spread among individual lines ranged from 1 deg to 8 deg. For the 1 deg spread, the
consecutive line orientations differed by 1 deg; for the 2 deg range, the orientations differed by
2 deg, and so on [see Fig 2(a)]. Each set was presented as an animated GIF. The GIF started with
a blank image for 300 ms, then showed each line one at a time for 300 ms each. The presentation
order of the lines was randomized. After the presentation of the lines, another blank image was
presented for 300 ms followed by the response image [see Fig 2(b)]. The response image
remained visible until participants made their response. For each combination of mean angle
and range, we created eight different animated GIFs, so each had a unique presentation order

Fig. 2 (a) Illustration of the eight line orientation ranges used in the line task. (b) Illustration of the
sequence of presentation for the line orientation task. Each of the nine lines in the set was shown
one at a time followed by the response image. The response image remained visible until the
participant made their response.
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of the lines. There were a total of 128 animated GIFs (two mean angles × eight levels of spread ×
eight repetitions). All stimuli can be 186 freely viewed and downloaded at https://osf.io/gdth2/.

2.3 Procedure

The experiment started with a welcome screen and then a question about the device being used
(phone, tablet, or computer). Radiologists were then asked demographic questions and questions
about whether their fellowship was in breast cancer, how many mammograms they read per year,
and how much of their time is spent in breast imaging. Untrained observers were asked to select
the fourth option as a simple catch trial. All 19 untrained observers who finished the experiment
answered this question correctly.

Participants were randomly assigned to start with the dot task or start with the lines task. For
the dot task, participants were told that they would see a display of dots and would have to make
a judgment about their spread as being less or more spread out. They completed four practice
trials, which consisted of one example of the lowest and highest levels of spread for each of the
two sample sizes. Feedback was not provided. On each trial, including practice and test trials, the
stimulus display remained until the participant indicated their response by selecting “less spread”
or “more spread.” This kind of task is known as a bisection task for which participants compare
what they see with an implicit mid-point, having first been trained on two anchor stimuli at the
far extremes. Bisection tasks like this have been used to measure time perception in pigeons,
mice, humans, and rats19,20 and speed perception in humans.21 Participants completed 144 trials
of the dot task. The trial order was randomized.

The line task was the same as in previous studies.15 Participants were told that they would see
a set of lines that would be presented in the same location one at a time and presented at different
orientations. They were told that they would then see four response options that varied in spread
and would have to select the response image that looked most like what the lines would have
looked like had they all been presented at once. This was also a bisection task with an implicit
mid-point. In this task, the anchor levels of spread were presented on each trial as the response
image. On each trial, they viewed one set of lines and selected one of the four options. These four
choices allowed us to assess the perceived spread of the lines as well as the perceived mean,
although we only analyzed the perceived spread given our research question. Participants com-
pleted 128 trials of the line task. The trial order was randomized.

3 Results

Bias in estimating spread was calculated for the dot task and the lines task. To calculate bias,
we computed the points of subjective equality (PSE) for each task from the coefficients from
general linear mixed models (GLMM) using the lme4 and lmerTest packages in R.22,23 The PSE
corresponds to the value of spread at which participants are equally likely to select more spread
versus less spread. PSEs were transformed into bias scores to assess the extent to which spread
was overestimated, underestimated, or accurately estimated. Participants with PSE scores
beyond three times the interquartile range (IQR) were excluded from the analysis.

3.1 Dot Task

For the dot task, the positions of the dots were randomly sampled from normal distributions,
so the sample SD and the population SD were highly correlated, r ¼ 0.96. We used the sample
SD as the fixed effect in our analyses.

The data from the dot task were first assessed for outliers: two untrained observers had PSEs
beyond three times the IQR (see Fig. 3) and were excluded from the analysis. The remaining data
from the dot task were analyzed with a GLMM. The dependent measure was the response (coded
as 0 for less spread and 1 for more spread). The fixed effects were the spread of the dots (SD,
which was mean-centered), the number of dots (10, 20), and their interaction. Random effects
including intercepts and slopes for dot spread were included for participants.

The model outcomes from the dot task are shown in Fig. 4. From the model, we then com-
puted PSEs using the MixedPsy package.24 This package provides 95% confidence intervals
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Fig. 3 Estimated spread in the dot task as a function of SD of the dots for each participant. The y
axis is the proportion of trials for which the participant said the dots were more spread. The x axis is
the SD of the dots. Symbols correspond to mean estimates. Curves are logistic regressions based
on the random effect coefficients from a GLMM. Participants are grouped by expertise. Thick black
lines correspond to radiologists who spend at least some of their clinical time in breast imaging
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(CIs) via the bootstrap method, rather than calculating p-values. This is appropriate given
that our focus is on estimating the magnitude of the bias and the uncertainty around this
estimate. PSE scores were transformed into bias scores, which corresponded to the percent of
overestimation.

The bias score showed a 30% bias to overestimate the spread of the dots, 95% CI [21, 37%].
Out of the 37 participants, 33 (89%) overestimated the spread (see Fig. 5). The variability over-
estimation effect did not significantly differ between the radiologists and the untrained observers,
Mdifference ¼ −4%, 95% CI [−20%, 11%]. The bias was slightly larger when there were only 10
dots than when there were 20 dots for untrained observers,Mdifference ¼ 3%, 95% CI [0.2%, 6%],
and for radiologists, Mdifference ¼ 2%, 95% CI [0.2%, 5%] (Fig. 6). The data indicate that
perceptual processes exaggerate the amount of spread seen in the display.

Another outcome is the extent to which participants were sensitive to the spread of the dots.
Sensitivity and bias are separate ways to describe performance. Sensitivity refers to the ability to
discriminate between different levels of spread, whereas bias refers to their tendency to see or
judge the dots as being more spread out. Sensitivity can be quantified as the slopes from the
model, with steeper slopes indicating better sensitivity to the spread of the dots whereas flat
slopes indicate no sensitivity (see Fig. 4). In psychophysics, it is more typical to quantify sen-
sitivity as the just-noticeable difference (JND). The JND is the amount of change needed in
the spread of the dots for that difference in spread to be noticeable, which is defined as shifting
responses from 50% (chance) to 75%.

Fig. 4 The proportion of more spread responses in the dot task as a function of the SD of the dots,
participant group, and number of dots (10,20). The vertical gray dashed line indicates the POE.
Curves that intersect the horizontal gray dashed line to the left of the vertical dashed line show
a bias to overestimate spread. Shading represents 95% CIs calculated from the model.

Fig. 3 (Continued) (radiologist*). Medium purple lines correspond to radiologists who spend no
clinical time in breast imaging (radiologist). Thin blue lines correspond to untrained observers
(untrained obs), and red dashed lines correspond to participants identified as outliers. The value
of the SD of the dots at the point where the curve intersects the horizontal gray dashed line
corresponds to the participant’s PSE. The vertical gray dashed line corresponds to the point
of objective equality (POE), which is the SD of the dots that is equally less and more spread.
Curves that intersect the horizontal line to the left of the vertical line indicate a bias to overestimate
spread (top-left panel is one example). Curves that intersect the horizontal line at the vertical line
indicate no bias (second row, fourth panel is one example).
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The JNDs were smaller, indicating better sensitivity to the spread of the dots, for the
radiologists than for the untrained observers, Mradiologist ¼ 0.11, 95% CI [0.10, 0.15],
Muntrained observers ¼ 0.15, 95% CI [0.12, 0.22], Mdifference ¼ 0.03, 95% CI [−0.01, 0.10].
Although the 95% CI of the difference overlapped zero, the radiologists showed 31% greater
sensitivity compared with the untrained observers. Perhaps with larger samples sizes, this dif-
ference would have been statistically significant; however, we cannot determine whether the
better performance by radiologists was due to their expertise versus an alternative explanation
such as motivation when completing the task. Of note, even though radiologists showed greater
sensitivity to the spread of the dots, they were still prone to the variability overestimation
effect.

Fig. 5 The variability overestimation effect in the dot task, collapsed across number of dots and
grouped by participant group. Each symbol corresponds to the bias in one participant. Open sym-
bols correspond to radiologists who spend at least some of their clinical time on mammograms.
The horizontal dashed line at 0 indicates no bias. Positive scores indicate a bias to overestimate
the spread of the dots, and negative scores indicate a bias to underestimate.

Fig. 6 Estimated variability overestimation effect (as % overestimation) in the dot task as a func-
tion of participant group and number of dots. The horizontal dashed line at 0 indicates no bias.
Positive scores indicate a bias to overestimate the spread of the dots. Error bars represents
95% CIs.
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Fig. 7 Estimated spread in the line task as a function of spread of the lines for each participant.
The y axis is the proportion of trials for which the participant said the dots were more spread. The x
axis is the spread of the lines (in units of degrees between closest lines). Symbols correspond to
mean estimates. Curves are logistic regressions based on the random effect coefficients from
a GLMM. Participants are grouped by expertise. Thick black lines correspond to radiologists
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3.2 Line Task

Responses were re-coded with selections of the less spread choices being coded as 0 and selec-
tions of the more spread choices coded as 1. A GLMM with the spread of the line orientations as
the fixed effect was run to identify outliers. Outliers were identified as participants who had a
PSE beyond 3 times the IQR, had flat slopes, or whose data did not appear to be well fit by the
model (assessed visually). Together, 13 participants were identified as outliers (nine untrained
observers, four radiologists; see Fig. 7). Although this is a high number of outliers, previous
research with this task has also shown high rates of outliers.15 Data loss is not a concern for
statistical power because the variability overestimation effect with line orientation is quite large.
The effect size is estimated to be d > 1.20.15 A power analysis indicates that, to achieve 80%
power to detect the variability overestimation effect estimated at d ¼ 1.20, only eight partici-
pants are needed. We analyzed the data from 16 radiologists and nine novices.

To calculate bias scores for the line task, we ran a GLMM with estimated spread (coded as 0
for less spread and 1 for more spread) as the dependent measure. The fixed effects were the
spread of the line orientations, group (radiologists or untrained observers), and their interaction.
Random effects for participant included intercepts and slopes for the main effect of the spread.
The model outcomes are shown in Fig. 8. The model coefficients were used to calculate bias
scores and JNDs.

Overall, participants overestimated the spread of the line orientations by 31%, 95% CI [22%,
41%]. Out of 27 participants, 26 (96%) overestimated the spread of the lines. Both radiologists
and untrained observers overestimated the spread of the line orientations by 31% and 33%,
respectively; 95% CI for radiologists [21%, 41%]; 95% CI for untrained observers [15%, 49%].
The difference in the bias between the two participant groups was 2%, 95% CI of the differ-
ence ½−17%; 2%�.

Fig. 8 Estimated spread in the line task as a function of the spread of the lines (in degrees) and
participant group. Shading represents 95% CIs calculated from the model.

Fig. 7 (Continued) who spend at least some of their clinical time in breast imaging (radiologist*).
Medium purple lines correspond to radiologists who spend no clinical time in breast imaging
(radiologist). Thin blue lines correspond to untrained observers (untrained obs), and red dashed
lines correspond to participants identified as outliers (with thickness corresponding to expertise).
The value of the spread of the lines at the point where the curve intersects the horizontal gray
dashed line corresponds to the participant’s PSE. The vertical gray dashed line corresponds
to the POE, which is the spread of the lines that is equally less and more spread. Curves that
intersect the horizontal line to the left of the vertical line indicate a bias to overestimate spread
(top-left panel is one example). Curves that intersect the horizontal line at the vertical line indicate
no bias (first row, last panel is one example).
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As with the dots, radiologists were more sensitive to the variability in the orientation of
the lines compared with untrained observers. The mean JND for line orientation spread for the
radiologists was 0.95 deg, 95% CI [0.82 deg, 1.23 deg]. This means that the spread of the lines
had to increase by nearly 1 deg for the radiologists to notice the difference in spread. The mean
JND for the untrained observers was 1.37 deg, 95% CI [1.02 deg, 2.16 deg]. Although the differ-
ence in JNDs was notable with radiologists being 44% more sensitive compared with untrained
observers, the 95% CIs for the difference overlapped 0,Mdifference ¼ 0.42, 95% CI ½−0.02; 1.46�.
Even with the radiologists potentially being more sensitive to the spread of the lines, they
showed a similar magnitude of the variability overestimation effect compared with the untrained
observers.

4 Discussion

Correctly categorizing the distribution of calcifications is a crucial visual task in the early detec-
tion of breast cancer. Because it is a visual task, performance may be susceptible to errors due to
visual biases. Potentially relevant is the bias to overestimate the variability of a set of objects such
as the positions of a set of dots or orientations of a set of lines.9,15 This bias is called the vari-
ability overestimation effect. The current research validates the possibility that this visual bias
could impede diagnostic accuracy by demonstrating that expert radiologists are also prone to this
bias. They overestimated the distributions of dots that resembled calcifications by 32%. This
validates the concern that the variability overestimation effect could impede diagnostic accuracy
when reading breast mammography by leading radiologists to perceive a distribution of dots as
more spread, resulting in more false-negative results.

The variability overestimation effect was present and of similar magnitudes for radiologists
and untrained observers. The lack of difference across levels of expertise suggests a universal
visual bias, rather than something that can be eliminated via training. Visual biases such as clas-
sic visual illusions such as the Shepard’s table illusion25 (see Fig. 9) have the property of being
cognitively impenetrable. This means that, once you know the tabletop shapes are the same as
each other (measure for yourself!), this knowledge does not eliminate or even lessen the illusion.
Visual biases can be robust and difficult to eradicate.

4.1 Limitations and Future Directions

We highlight a few limitations with the current experiments. Although the dots bore some resem-
blance to calcifications, the task was not presented as a breast cancer screening task nor a sim-
ulation. Future work could assess whether this same bias would occur in a more realistic breast
cancer screening task. Another limitation is the lack of radiologists in the study who primarily

Fig. 9 Shepard’s table illusion.
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focus on breast imaging. Future studies could determine whether radiologists with more exper-
tise in breast imaging are also susceptible to the bias. Finally, future work could explore the
impact that providing explicit feedback on variability judgments has on the magnitude of the
bias. This would indicate whether training programs could help mitigate or lessen the variability
overestimation effect and its potential role in misdiagnoses.

5 Summary

The variability overestimation effect is a potential problem for classifying distributions of
calcifications when diagnosing breast cancer (see Fig. 1). Calcifications with more clustered
distributions may be misperceived as being more regional or diffuse. The errors produced by
the variability overestimation effect could lead to false-negative diagnoses, and a breast cancer
may go undetected.
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